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PREFACE 

A  FIRST  draft  of  this  book  was  published  in  1921  as  a  mathematical  supple- 
ment to  the  French  Edition  of  Space,  Time  and  Gravitation.  During 

the  ensuing  eighteen  months  I  have  pursued  my  intention  of  developing  it 

into  a  more  systematic  and  comprehensive  treatise  on  the  mathematical 

theory  of  Relativity.  The  matter  has  been  rewritten,  the  sequence  of  the  argu- 
ment rearranged  in  many  places,  and  numerous  additions  made  throughout ; 

so  that  the  work  is  now  expanded  to  three  times  its  former  size.  It  is  hoped 

that,  as  now  enlarged,  it  may  meet  the  needs  of  those  who  wish  to  enter  fully 

into  these  problems  of  reconstruction  of  theoretical  physics. 
The  reader  is  expected  to  have  a  general  acquaintance  with  the  less 

technical  discussion  of  the  theory  given  in  Space,  Time  and  Gravitation, 

although  there  is  not  often  occasion  to  make  direct  reference  to  it.  But  it  is 
eminently  desirable  to  have  a  general  grasp  of  the  revolution  of  thought 

associated  with  the  theory  of  Relativity  before  approaching  it  along  the 
narrow  lines  of  strict  mathematical  deduction.  In  the  former  work  wc  ex- 

plained how  the  older  conceptions  of  physics  had  become  untenable,  and  traced 

the  gradual  ascent  to  the  ideas  which  must  supplant  them.  Here  our  task  is 
to  formulate  mathematically  this  new  conception  of  the  world  and  to  follow 

out  the  consequences  to  the  fullest  extent. 

The  present  widespread  interest  in  the  theory  arose  from  the  verification 
of  certain  minute  deviations  from  Newtonian  laws.  To  those  who  are  still 

hesitating  and  reluctant  to  leave  the  old  faith,  these  deviations  will  remain 
the  chief  centre  of  interest ;  but  for  those  who  have  caught  the  spirit  of  the 

new  ideas  the  observational  predictions  form  only  a  minor  part  of  the  subject. 

It  is  claimed  for  the  theory  that  it  leads  to  an  understanding  of  the  world  of 

physics  clearer  and  more  penetrating  than  that  previously  attained,  and  it 
has  been  my  aim  to  develop  the  theory  in  a  form  which  throws  most  light 

on  the  origin  and  significance  of  the  great  laws  of  physics. 

It  is  hoped  that  difficulties  which  are  merely  analytical  have  been  mini- 
mised by  giving  rather  fully  the  intermediate  steps  in  all  the  proofs  with 

abundant  cross-references  to  the  auxiliary  formulae  used. 
For  those  who  do  not  read  the  book  consecutively  attention  may  be  called 

to  the  following  points  in  the  notation.  The  summation  convention  (p.  50) 

is  used.  German  letters  always  denote  the  product  of  the  corresjjonding 

English  letter  by  V  —  g  (p.  111).  Vl  is  the  symbol  for  "  Hamiltonian  differen- 

tiation" introduced  on  p.  139.  An  asterisk  is  prefixed  to  symbols  generalised 
so  as  to  be  independent  of  or  covariant  with  the  gauge  (p.  203). 
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A  selected  list  of  original  papers  on  the  subject  is  given  in  the  Biblio- 
graphy at  the  end,  and  many  of  these  are  sources  (either  directly  or  at 

second-hand)  of  the  developments  here  set  forth.  To  fit  these  into  a  con- 
tinuous chain  of  deduction  has  involved  considerable  modifications  from  their 

original  form,  so  that  it  has  not  generally  been  found  practicable  to  indicate 

the  sources  of  the  separate  sections.  A  frequent  cause  of  deviation  in  treat- 
ment is  the  fact  that  in  the  view  of  most  contemporary  writers  the  Principle 

of  Stationary  Action  is  the  final  governing  law  of  the  world ;  for  reasons 

explained  in  the  text  I  am  unwilling  to  accord  it  so  exalted  a  position.  After 
the  original  papers  of  Einstein,  and  those  of  de  Sitter  from  which  I  first 

acquired  an  interest  in  the  theory,  I  am  most  indebted  to  Weyl's  Raum,  Zeit, 
Materie.  Weyl's  influence  will  be  especially  traced  in  §§  49,  58,  59,  61,  63,  as 
well  as  in  the  sections  referring  to  his  own  theory. 

I  am  under  great  obligations  to  the  officers  and  staff'  of  the  University 
Press  for  their  help  and  care  in  the  intricate  printing. 

A.  S.  E. 

10  August  1922. 
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INTEODUCTION 

The  subject  of  this  mathematical  treatise  is  not  pure  mathematics  but 

physics.  The  vocabulary  of  the  physicist  comprises  a  number  of  words  such 

as  length,  angle,  velocity,  force,  work,  potential,  current,  etc.,  which  we  shall 

call  briefly  "physical  quantities."  Some  of  these  terms  occur  in  pure  mathe- 
matics also  ;  in  that  subject  they  may  have  a  generalised  meaning  which  does 

not  concern  us  here.  The  pure  mathematician  deals  with  ideal  quantities 

defined  as  having  the  properties  which  he  deliberately  assigns  to  them.  But 

in  an  experimental  science  we  have  to  discover  properties  not  to  assign  them  ; 
and  physical  quantities  are  defined  primarily  according  to  the  way  in  which 
we  recognise  them  when  confronted  by  them  in  our  observation  of  the  world 
around  us. 

Consider,  for  example,  a  length  or  distance  between  two  points.  It  is 

a  numerical  quantity  associated  with  the  two  points;  and  we  all  know  the 

procedure  followed  in  practice  in  assigning  this  numerical  quantity  to  two 

points  in  nature.  A  definition  of  distance  will  be  obtained  by  stating  the 

exact  procedure ;  that  clearly  must  be  the  primary  definition  if  we  are  to 

make  sure  of  using  the  word  in  the  sense  familiar  to  everybody.  The  pure 
mathematician  proceeds  differently;  he  defines  distance  as  an  attribute  of 

the  two  points  which  obeys  certain  laws — the  axioms  of  the  geometry  which 

he  happens  to  have  chosen — and  he  is  not  concerned  with  the  question  how 

this  "distance"  would  exhibit  itself  in  practical  observation.  So  far  as  his  own 
investigations  are  concerned,  he  takes  care  to  use  the  word  self-consistent ly ; 
but  it  does  not  necessarily  denote  the  thing  which  the  rest  of  mankind  are 

accustomed  to  recognise  as  the  distance  of  the  two  points. 

To  find  out  any  physical  quantity  we  perform  certain  practical  operations 

followed  by  calculations ;  the  operations  are  called  experiments  or  observations 

according  as  the  conditions  are  more  or  less  closely  under  our  control.  The 

physical  quantity  so  discovered  is  primarily  the  result  of  the  operations  and 

calculations;  it  is,  so  to  speak,  a  manufactured  article — manufactured  by 
our  operations.  But  the  physicist  is  not  generally  content  to  believe  that  the 

quantity  he  arrives  at  is  something  whose  nature  is  inseparable  from  the  kind 

of  operations  which  led  to  it ;  he  has  an  idea  that  if  he  could  become  a  god 

contemplating  the  external  world,  he  would  see  his  manufactured  physical 

quantity  forming  a  distinct  feature  of  the  picture.  By  finding  that  he  can 

lay  x  unit  measuring-rods  in  a  line  between  two  points,  he  has  manufactured 
the  quantity  x  which  he  calls  the  distance  between  the  points ;  but  he  believes 

that  that  distance  x  is  something  already  existing  in  the  picture  of  the  world 

—a  gulf  which  would  be  apprehended  by  a  superior  intelligence  as  existing 
in  itself  without  reference  to  the  notion  of  operations  with  measuring-rods. 
e.  1 



2  INTRODUCTION 

Yet  he  makes  curious  and  apparently  illogical  discriminations.  The  parallax 

of  a  star  is  found  by  a  well-known  series  of  operations  and  calculations ;  the 

distance  across  the  room  is  found  by  operations  with  a  tape-measure.  Both 
parallax  and  distance  are  quantities  manufactured  by  our  operations ;  but 
for  some  reason  we  do  not  expect  parallax  to  appear  as  a  distinct  element  in 

the  true  picture  of  nature  in  the  same  way  that  distance  does.  Or  again, 

instead  of  cutting  short  the  astronomical  calculations  when  we  reach  the 

parallax,  we  might  go  on  to  take  the  cube  of  the  result,  and  so  obtain  another 

manufactured  quantity,  a  "  cubic  parallax."  For  some  obscure  reason  we 
expect  to  see  distance  appearing  plainly  as  a  gulf  in  the  true  world-picture ; 
parallax  does  not  appear  directly,  though  it  can  be  exhibited  as  an  angle  by 

a  comparatively  simple  construction  ;  and  cubic  parallax  is  not  in  the  picture 
at  all.  The  physicist  would  say  that  he  finds  a  length,  and  manufactures  a 

cubic  parallax ;  but  it  is  only  because  he  has  inherited  a  preconceived  theory 
of  the  world  that  he  makes  the  distinction.  We  shall  venture  to  challenge 
this  distinction. 

Distance,  parallax  and  cubic  parallax  have  the  same  kind  of  potential 

existence  even  when  the  operations  of  measurement  are  not  actually  made — 
if  you  will  move  sideways  you  will  be  able  to  determine  the  angular  shift,  if 

you  will  lay  measuring-rods  in  a  line  to  the  object  you  will  be  able  to  count 
their  number.  Any  one  of  the  three  is  an  indication  to  us  of  some  existent 

condition  or  relation  in  the  world  outside  us — a  condition  not  created  by  our 

operations.  But  there  seems  no  reason  to  conclude  that  this  world-condition 
resembles  distance  any  more  closely  than  it  resembles  parallax  or  cubic 

parallax.  Indeed  any  notion  of  "  resemblance  "  between  physical  quantities 
and  the  world-conditions  underlying  them  seems  to  be  inappropriate.  If  the 
length  AB  is  double  the  length  CD,  the  parallax  of  B  from  A  is  half  the  paral- 

lax of  D  from  C ;  there  is  undoubtedly  some  world-relation  which  is  different 

for  AB  and  CD,  but  there  is  no  reason  to  regard  the  world-relation  of  A B  as 

being  better  represented  by  double  than  by  half  the  world-relatiou  of  CD. 
The  connection  of  manufactured  physical  quantities  with  the  existent 

world-condition  can  be  expressed  by  saying  that  the  physical  quantities  are 

measure-numbers  of  the  world-condition.  Measure-numbers  may  be  assigned 
according  to  any  code,  the  only  requirement  being  that  the  same  measure- 

number  always  indicates  the  same  world-condition  and  that  different  world- 

conditions  receive  different  measure-numbers.  Two  or  more  physical  quantities 
may  thus  be  measure-numbers  of  the  same  world-condition,  but  in  different 
codes,  e.g.  parallax  and  distance;  mass  and  energy;  stellar  magnitude  and  lumi- 

nosity. The  constant  formulae  connecting  these  pairs  of  physical  quantities 

give  the  relation  between  the  respective  codes.  But  in  admitting  that  physical 

quantities  can  be  used  as  measure-numbers  of  world-conditions  existing 
independently  of  our  operations,  we  do  not  alter  their  status  as  manufactured 

quantities.    The   same  series  of  operations  will  naturally  manufacture  the 
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same  result  when  world-conditions  are  the  same,  and  different  results  when 

they  are  different.  (Differences  of  world-conditions  which  do  not  influence 
the  results  of  experiment  and  observation  are  ipso  facto  excluded  from  the 

domain  of  physical  knowledge.)  The  size  to  which  a  crystal  grows  may  be  a 

measure-number  of  the  temperature  of  the  mother-liquor  ;  but  it  is  none  the 
less  a  manufactured  size,  and  we  do  not  conclude  that  the  true  nature  of  size 
is  caloric. 

The  study  of  physical  quantities,  although  they  are  the  results  of  our 

own  operations  (actual  or  potential),  gives  us  some  kind  of  knowledge  of  the 

world-conditions,  since  the  same  operations  will  give  different  results  in 

different  world-conditions.  It  seems  that  this  indirect  knowledge  is  all  that 

we  can  ever  attain,  and  that  it  is  only  through  its  influences  on  such  opera- 

tions that  we  can  represent  to  ourselves  a  "condition  of  the  world."  Any 
attempt  to  describe  a  condition  of  the  world  otherwise  is  either  mathematical 

symbolism  or  meaningless  jargon.  To  grasp  a  condition  of  the  world  as 

completely  as  it  is  in  our  power  to  grasp  it,  we  must  have  in  our  minds  a 

symbol  which  comprehends  at  the  same  time  its  influence  on  the  results  of 

all  possible  kinds  of  operations.  Or,  what  comes  to  the  same  thing,  we  must 

contemplate  its  measures  according  to  all  possible  measure-codes — of  course, 
without  confusing  the  different  codes.  It  might  well  seem  impossible  to 

realise  so  comprehensive  an  outlook;  but  we  shall  find  that  the  mathematical 

calculus  of  tensors  does  represent  and  deal  with  world-conditions  precisely  in 

this  way.  A  tensor  expresses  simultaneously  the  whole  group  of  measure- 
numbers  associated  with  any  world-condition ;  and  machinery  is  provided  for 
keeping  the  various  codes  distinct.  For  this  reason  the  somewhat  difficult 

tensor  calculus  is  not  to  be  regarded  as  an  evil  necessity  in  this  subject,  which 

ought  if  possible  to  be  replaced  by  simpler  analytical  devices  ;  our  knowledge 
of  conditions  in  the  external  world,  as  it  comes  to  us  through  observation  and 

experiment,  is  precisely  of  the  kind  which  can  be  expressed  by  a  tensor  and 

not  otherwise.  And,  just  as  in  arithmetic  we  can  deal  freely  with  a  billion 

objects  without  trying  to  visualise  the  enormous  collection ;  so  the  tensor 

calculus  enables  us  to  deal  with  the  world-condition  in  the  totality  of  its 
aspects  without  attempting  to  picture  it. 

leaving  regard  to  this  distinction  between  physical  quantities  and  world- 
conditions,  we  shall  not  define  a  physical  quantity  as  though  it  were  a  feature 

in  the  world-picture  which  had  to  be  sought  out.  A  physical  quantity  is 
defined  by  the  series  of  operations  and  calculations  of  which  it  is  the  result. 

The  tendency  to  this  kind  of  definition  had  progressed  far  even  in  pre-relativity 

physics.  Force  had  become  "  mass  x  acceleration,"  and  was  no  longer  an  in- 
visible agent  in  the  world-picture,  at  least  so  far  as  its  definition  was  concerned. 

Mass  is  defined  by  experiments  on  inertial  properties,  no  longer  as  ''quantity 

of  matter."  But  for  some  terms  the  older  kind  of  definition  (or  lack  of 
definition)   has  been  obstinately  adhered   to ;    and   for  these  the  relativity 
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theory  must  find  new  definitions.  In  most  cases  there  is  no  great  difficulty 
in  framing  them.  We  do  not  need  to  ask  the  physicist  what  conception 

he  attaches  to  "  length  " ;  we  watch  him  measuring  length,  and  frame  our 
definition  according  to  the  operations  he  performs.  There  may  sometimes  be 
cases  in  which  theory  outruns  experiment  and  requires  us  to  decide  between 
two  definitions,  either  of  which  would  be  consistent  with  present  experimental 

practice ;  but  usually  we  can  foresee  which  of  them  corresponds  to  the  ideal 
which  the  experimentalist  has  set  before  himself.  For  example,  until  recently 

the  practical  man  was  never  confronted  with  problems  of  non-Euclidean  space, 
and  it  might  be  suggested  that  he  would  be  uncertain  how  to  construct  a 
straight  line  when  so  confronted ;  but  as  a  matter  of  fact  he  showed  no 

hesitation,  and  the  eclipse  observers  measured  without  ambiguity  the  bending 

of  light  from  the  "  straight  line."  The  appropriate  practical  definition  was  so 
obvious  that  there  was  never  any  danger  of  different  people  meaning  different 

loci  by  this  term.  Our  guiding  rule  will  be  that  a  physical  quantity  must  be 
defined  by  prescribing  operations  and  calculations  which  will  lead  to  an 

unambiguous  result,  and  that  due  heed  must  be  paid  to  existing  practice ; 
the  last  clause  should  secure  that  everyone  uses  the  term  to  denote  the  same 

quantity,  however  much  disagreement  there  may  be  as  to  the  conception 
attached  to  it. 

When  defined  in  this  way,  there  can  be  no  question  as  to  whether  the 

operations  give  us  the  real  physical  quantity  or  whether  some  theoretical 

correction  (not  mentioned  in  the  definition)  is  needed.  The  physical  quantity 

is  the  measure-number  of  a  world-condition  in  some  code ;  we  cannot  assert 

that  a  code  is  right  or  wrong,  or  that  a  measure-number  is  real  or  unreal ; 
what  we  require  is  that  the  code  should  be  the  accepted  code,  and  the  measure- 
number  the  number  in  current  use.  For  example,  what  is  the  real  difference 

of  time  between  two  events  at  distant  places  ?  The  operation  of  determining 
time  has  been  entrusted  to  astronomers,  who  (perhaps  for  mistaken  reasons) 

have  elaborated  a  regular  procedure.  If  the  times  of  the  two  events  are  found 
in  accordance  with  this  procedure,  the  difference  must  be  the  real  difference 

of  time ;  the  phrase  has  no  other  meaning.  But  there  is  a  certain  generalisa- 
tion to  be  noticed.  In  cataloguing  the  operations  of  the  astronomers,  so  as  to 

obtain  a  definition  of  time,  we  remark  that  one  condition  is  adhered  to  in 

practice  evidently  from  necessity  and  not  from  design — the  observer  and  his 
apparatus  are  placed  on  the  earth  and  move  with  the  earth.  This  condition 

is  so  accidental  and  parochial  that  we  are  reluctant  to  insist  on  it  in  our 

definition  of  time ;  yet  it  so  happens  that  the  motion  of  the  apparatus  makes 
an  important  difference  in  the  measurement,  and  without  this  restriction  the 

operations  lead  to  no  definite  result  and  cannot  define  anything.  We  adopt 
what  seems  to  be  the  commonsense  solution  of  the  difficulty.  W  e  decide  that 

time  is  relative  to  an  observer ;  that  is  to  say,  Ave  admit  that  an  observer  on 

another  star,  who  carries  out  all  the  rest  of  the  operations  and  calculations 
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as  specified  in  our  definition,  is  also  measuring  time — not  our  time,  but  a 
time  relative  to  himself.  The  same  relativity  affects  the  great  majority  of 

elementary  physical  quantities*;  the  description  of  the  operations  is  insuf- 
ficient to  lead  to  a  unique  answer  unless  we  arbitrarily  prescribe  a  particular 

motion  of  the  observer  and  his  apparatus. 

In  this  example  we  have  had  a  typical  illustration  of  "  relativity,"  the 
recognition  of  which  has  had  far-reaching  results  revolutionising  the  outlook 
of  physics.  Any  operation  of  measurement  involves  a  comparison  between 

a  measuring-appliance  and  the  thing  measured.  Both  play  an  equal  part  in 
the  comparison  and  are  theoretically,  and  indeed  often  practically,  inter- 

changeable ;  for  example,  the  result  of  an  observation  with  the  meridian  circle 

gives  the  right  ascension  of  the  star  or  the  error  of  the  clock  indifferently, 
and  we  can  regard  either  the  clock  or  the  star  as  the  instrument  or  the 

object  of  measurement.  Remembering  that  physical  quantities  are  results  of 

comparisons  of  this  kind,  it  is  clear  that  they  cannot  be  considered  to  belong 
solely  to  one  partner  in  the  comparison.  It  is  true  that  we  standardise  the 

measuring  appliance  as  far  as  possible  (the  method  of  standardisation  being 

explained  or  implied  in  the  definition  of  the  physical  quantity)  so  that  in 

general  the  variability  of  the  measurement  can  only  indicate  a  variability  of 
the  object  measured.  To  that  extent  there  is  no  great  practical  harm  in 

regarding  the  measurement  as  belonging  solely  to  the  second  partner  in 

the  relation.  But  even  so  we  have  often  puzzled  ourselves  needlessly  over 
paradoxes,  which  disappear  when  we  realise  that  the  physical  quantities  are 
not  properties  of  certain  external  objects  but  are  relations  between  these 

objects  and  something  else.  Moreover,  we  have  seen  that  the  standardisation 

of  the  measuring-appliance  is  usually  left  incomplete,  as  regards  the  specifica- 
tion of  its  motion ;  and  rather  than  complete  it  in  a  way  which  would  be 

arbitrary  and  pernicious,  we  prefer  to  recognise  explicitly  that  our  physical 
quantities  belong  not  solely  to  the  objects  measured  but  have  reference  also 

to  the  particular  frame  of  motion  that  we  choose. 

The  principle  of  relativity  goes  still  further.  Even  if  the  measuring- 
appliances  were  standardised  completely,  the  physical  quantities  would  still 
involve  the  properties  of  the  constant  standard.  We  have  seen  that  the 

world-condition  or  object  which  is  surveyed  can  only  be  apprehended  in  our 
knowledge  as  the  sum  total  of  all  the  measurements  in  which  it  can  be 

concerned ;  any  intrinsic  property  of  the  object  must  appear  as  a  uniformity 

or  law  in  these  measures.  When  one  partner  in  the  comparison  is  fixed  and 

the  other  partner  varied  widely,  whatever  is  common  to  all  the  measurements 

may  be  ascribed  exclusively  to  the  first  partner  and  regarded  as  an  intrinsic 

property  of  it.  Let  us  apply  this  to  the  converse  comparison ;  that  is  to  say, 

keep  the  measuring-appliance  constant  or  standardised,  and  vary  as  widely 

as  possible  the  objects  measured — or,  in  simpler  terms,  make  a  particular 

*  The  most  important  exceptions  are  number  (of  discrete  entities),  action,  and  entropy. 
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kind  of  measurement  in  all  parts  of  the  field.  Intrinsic  properties  of  the 

measuring-appliance  should  appear  as  uniformities  or  laws  in  these  measures. 

We  are  familiar  with  several  such  uniformities;  but  we  have  not  generally 

recognised  them  as  properties  of  the  measuring-appliance.  We  have  called 
them  laws  of  nature  1 

The  development  of  physics  is  progressive,  and  as  the  theories  of  the 

external  world  become  crystallised,  we  often  tend  to  replace  the  elementary 

physical  quantities  defined  through  operations  of  measurement  by  theoretical 

quantities  believed  to  have  a  more  fundamental  significance  in  the  external 

world.  Thus  the  vis  viva  mv2,  which  is  immediately  determinable  by  experi- 
ment, becomes  replaced  by  a  generalised  energy,  virtually  defined  by  having 

the  property  of  conservation ;  and  our  problem  becomes  inverted — we  have 
not  to  discover  the  properties  of  a  thing  which  we  have  recognised  in  nature, 

but  to  discover  how  to  recognise  in  nature  a  thing  whose  properties  we  have 

assigned.  This  development  seems  to  be  inevitable ;  but  it  has  grave  draw- 
backs especially  when  theories  have  to  be  reconstructed.  Fuller  knowledge 

may  show  that  there  is  nothing  in  nature  having  precisely  the  properties 

assigned ;  or  it  may  turn  out  that  the  thing  having  these  properties  has 

entirely  lost  its  importance  when  the  new  theoretical  standpoint  is  adopted*. 
When  we  decide  to  throw  the  older  theories  into  the  melting-pot  and  make 
a  clean  start,  it  is  best  to  relegate  to  the  background  terminology  associated 

with  special  hypotheses  of  physics.  Physical  quantities  defined  by  operations 

of  measurement  are  independent  of  theory,  and  form  the  proper  starting-point 
for  any  new  theoretical  development. 

Now  that  we  have  explained  how  physical  quantities  are  to  be  defined, 

the  reader  may  be  surprised  that  we  do  not  proceed  to  give  the  definitions  of 

the  leading  physical  quantities.  But  to  catalogue  all  the  precautions  and 

provisos  in  the  operation  of  determining  even  so  simple  a  thing  as  length,  is 

a  task  which  we  shirk.  We  might  take  refuge  in  the  statement  that  the  task 

though  laborious  is  straightforward,  and  that  the  practical  physicist  knows 
the  whole  procedure  without  our  writing  it  down  for  him.  But  it  is  better  to 

be  more  cautious.  I  should  be  puzzled  to  say  off-hand  what  is  the  series  of 

operations  and  calculations  involved  in  measuring  a  length  of  10~15  cm. ; 
nevertheless  I  shall  refer  to  such  a  length  when  necessary  as  though  it  were 

a  quantity  of  which  the  definition  is  obvious.  We  cannot  be  forever  examining 

our  foundations ;  we  look  particularly  to  those  places  where  it  is  reported  to 

us  that  they  are  insecure.  I  may  be  laying  myself  open  to  the  charge  that 

I  am  doing  the  very  thing  I  criticise  in  the  older  physics — -using  terms  that 

*  We  shall  see  in  §  59  that  this  has  happened  in  the  case  of  energy.  The  dead-hand  of  a 
superseded  theory  continues  to  embarrass  us,  because  in  this  case  the  recognised  terminology 

still  has  implicit  reference  to  it.  This,  however,  is  only  a  slight  drawback  to  set  off  against  the 

many  advantages  obtained  from  the  classical  generalisation  of  energy  as  a  step  towards  the  more 
complete  theory. 
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have  no  definite  observational  meaning,  and  mingling  with  my  physical 
quantities  things  which  are  not  the  results  of  any  conceivable  experimental 

operation.    I  would  reply — 
By  all  means  explore  this  criticism  if  you  regard  it  as  a  promising  field 

of  inquiry.  I  here  assume  that  you  will  probably  find  me  a  justification  for 

my  10-15  cm. ;  but  you  may  find  that  there  is  an  insurmountable  ambiguity 
in  defining  it.  In  the  latter  event  you  may  be  on  the  track  of  something 
which  will  give  a  new  insight  into  the  fundamental  nature  of  the  world. 

Indeed  it  has  been  suspected  that  the  perplexities  of  quantum  phenomena 

may  arise  from  the  tacit  assumption  that  the  notions  of  length  and  duration, 

acquired  primarily  from  experiences  in  which  the  average  effects  of  large 
numbers  of  quanta  are  involved,  are  applicable  in  the  study  of  individual 
quanta.  There  may  need  to  be  much  more  excavation  before  we  have  brought 

to  light  all  that  is  of  value  in  this  critical  consideration  of  experimental 

knowledge.  Meanwhile  I  want  to  set  before  you  the  treasure  which  has 
already  been  unearthed  in  this  field. 



CHAPTER  I 

ELEMENTARY  PRINCIPLES 

1.    Indeterminateness  of  the  space-time  frame. 

It  has  been  explained  in  the  early  chapters  of  Space,  Time  and  Gravitation 

that  observers  with  different  motions  use  different  reckonings  of  space  and 

time,  and  that  no  one  of  these  reckonings  is  more  fundamental  than  another. 

Our  problem  is  to  construct  a  method  of  description  of  the  world  in  which 

this  indeterminateness  of  the  space-time  frame  of  reference  is  formally 

recognised. 

Prior  to  Einstein's  researches  no  doubt  was  entertained  that  there  existed 

a  "true  even-flowing  time"  which  was  unique  and  universal.  The  moving- 
observer,  who  adopts  a  time-reckoning  different  from  the  unique  true  time, 

must  have  been  deluded  into  accepting  a  fictitious  time  with  a  fictitious 

space-reckoning  modified  to  correspond.  The  compensating  behaviour  of 

electromagnetic  forces  and  of  matter  is  so  perfect  that,  so  far  as  present 

knowledge  extends,  there  is  no  test  which  will  distinguish  the  true  time  from 
the  fictitious.  But  since  there  are  many  fictitious  times  and,  according  to 

this  view,  only  one  true  time,  some  kind  of  distinction  is  implied  although  its 
nature  is  not  indicated. 

Those  who  still  insist  on  the  existence  of  a  unique  "  true  time  "  generally 
rely  on  the  possibility  that  the  resources  of  experiment  are  not  yet  exhausted 

and  that  some  day  a  discriminating  test  may  be  found.  But  the  off-chance 
that  a  future  generation  may  discover  a  significance  in  our  utterances  is 

scarcely  an  excuse  for  making  meaningless  noises. 

Thus  in  the  phrase  true  time,  "  true  "  is  an  epithet  whose  meaning  has  yet 
to  be  discovered.  It  is  a  blank  label.  We  do  not  know  what  is  to  be  written 

on  the  label,  nor  to  which  of  the  apparently  indistinguishable  time-reckonings 
it  ought  to  be  attached.  There  is  no  way  of  progress  here.  We  return  to 

firmer  ground,  and  note  that  in  the  mass  of  experimental  knowledge  which 

has  accumulated,  the  words  time  and  space  refer  to  one  of  the  "  fictitious  " 
times  and  spaces — primarily  that  adopted  by  an  observer  travelling  with  the 

earth,  or  with  the  sun — and  our  theory  will  deal  directly  with  these  space- 
time  frames  of  reference,  which  are  admittedly  fictitious  or,  in  the  more  usual 

phrase,  relative  to  an  observer  with  particular  motion. 

The  observers  are  studying  the  same  external  events,  notwithstanding 

their  different  space-time  frames.  The  space-time  frame  is  therefore  some- 

thing overlaid  by  the  observer  on  the  external  world ;  the  partitions  repre- 
senting his  space  and  time  reckonings  are  imaginary  surfaces  drawn  in  the 

world  like  the  lines  of  latitude  and  longitude  drawn  on  the  earth.    They  do 
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not  follow  the  natural  lines  of  structure  of  the  world,  any  more  than  the 

meridians  follow  the  lines  of  geological  structure  of  the  earth.  Such  a  mesh- 
system  is  of  great  utility  and  convenience  in  describing  phenomena,  and  we 

shall  continue  to  employ  it ;  but  we  must  endeavour  not  to  lose  sight  of  its 
fictitious  and  arbitrary  nature. 

It  is  evident  from  experience  that  a  four-fold  mesh-system  must  be  used ; 
and  accordingly  an  event  is  located  by  four  coordinates,  generally  taken  as 
x,  y,  z,  t.  To  understand  the  significance  of  this  location,  we  first  consider 

the  simple  case  of  two  dimensions.  If  we  describe  the  points  of  a  plane  figure 

by  their  rectangular  coordinates  x,  y,  the  description  of  the  figure  is  complete 
and  would  enable  anyone  to  construct  it ;  but  it  is  also  more  than  complete, 

because  it  specifies  an  arbitrary  element,  the  orientation,  which  is  irrelevant 
to  the  intrinsic  properties  of  the  figure  and  ought  to  be  cast  aside  from 

a  description  of  those  properties.  Alternatively  we  can  describe  the  figure  by 

stating  the  distances  between  the  various  pairs  of  points  in  it ;  this  descrip- 
tion is  also  complete,  and  it  has  the  merit  that  it  does  not  prescribe  the 

orientation  or  contain  anything  else  irrelevant  to  the  intrinsic  properties  of 

the  figure.  The  drawback  is  that  it  is  usually  too  cumbersome  to  use  in 

practice  for  any  but  the  simplest  figures. 

Similarly  our  four  coordinates  x,  y,  z,  t  may  be  expected  to  contain  an 

arbitrary  element,  analogous  to  an  orientation,  which  has  nothing  to  do  with 

the  properties  of  the  configuration  of  events.  A  different  set  of  values  of 
x,  y,  z,  t  may  be  chosen  in  which  this  arbitrary  element  of  the  description  is 

altered,  bub  the  configuration  of  events  remains  unchanged.  It  is  this 

arbitrariness  in  coordinate  specification  which  appears  as  the  indeterminate- 

ness  of  the  space-time  frame.  The  other  method  of  description,  by  giving  the 
distances  between  every  pair  of  events  (or  rather  certain  relations  between 

pairs  of  events  which  are  analogous  to  distance),  contains  all  that  is  relevant 

to  the  configuration  of  events  and  nothing  that  is  irrelevant.  By  adopting 

this  latter  method  Ave  can  strip  away  the  arbitrary  part  of  the  description, 

leaving  only  that  which  has  an  exact  counterpart  in  the  configuration  of  the 
external  world. 

To  put  the  contrast  in  another  form,  in  our  common  outlook  the  idea  of 

position  or  location  seems  to  be  fundamental.  From  it  we  derive  distance  or 

extension  as  a  subsidiary  notion,  which  covers  part  but  not  all  of  the  con- 
ceptions which  we  associate  with  location.  Position  is  looked  upon  as  the 

physical  fact — a  coincidence  with  what  is  vaguely  conceived  of  as  an 
identifiable  point  of  space — whereas  distance  is  looked  upon  as  an  abstraction 
or  a  computational  result  calculable  when  the  positions  are  known.  The  view 

which  we  are  going  to  adopt  reverses  this.  Extension  (distance,  interval)  is 
now  fundamental;  and  the  location  of  an  object  is  a  computational  result 

summarising  the  physical  fact  that  it  is  at  certain  intervals  from  the  other 

objects  in  the  world.  Any  idea  contained  in  the  concept  location  which  is  not 
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expressible  by  reference  to  distances  from  other  objects,  must  be  dismissed 

from  our  minds.  Our  ultimate  analysis  of  space  leads  us  not  to  a  "here"  and 

a  "  there,"  but  to  an  extension  such  as  that  which  relates  "  here  "  and  "  there." 
To  put  the  conclusion  rather  crudely — space  is  not  a  lot  of  points  close 
together  ;  it  is  a  lot  of  distances  interlocked. 

Accordingly  our  fundamental  hypothesis  is  that — 

Everything  connected  with  location  which  enters  into  observational  know- 
ledge— everything  we  can  know  about  the  configuration  of  events — is  contained 

in  a  relation  of  extension  between  pairs  of  events. 
This  relation  is  called  the  interval,  and  its  measure  is  denoted  by  ds. 

If  we  have  a  system  8  consisting  of  events  A,  B,  G,  D,  ...,  and  a  system  S/ 
consisting  of  events  A',  B' ,  C,  D',  . ..,  then  the  fundamental  hypothesis  implies 
that  the  two  systems  will  be  exactly  alike  observationally  if,  and  only  if,  all 

pairs  of  corresponding  intervals  in  the  two  systems  are  equal,  AB  =  A'B'} 
AC  =  A'C, ....  In  that  case  if  8  and  8'. are  material  systems  they  will  appear 

to  us  as  precisely  similar  bodies  or  mechanisms ;  or  if  8  and  8'  correspond  to 
the  same  material  body  at  different  times,  it  will  appear  that  the  body  has 

not  undergone  any  change  detectable  by  observation.  But  the  position, 

motion,  or  orientation  of  the  body  may  be  different ;  that  is  a  change  detect- 
able by  observation,  not  of  the  system  8,  but  of  a  wider  system  comprising  S 

and  surrounding  bodies. 

Again  let  the  systems  8  and  8'  be  abstract  coordinate-frames  of  reference, 
the  events  being  the  corners  of  the  meshes ;  if  all  corresponding  intervals  in 

the  two  systems  are  equal,  we  shall  recognise  that  the  coordinate-frames  are 
of  precisely  the  same  kind — rectangular,  polar,  unaccelerated,  rotating,  etc. 

2.    The  fundamental  quadratic  form. 

We  have  to  keep  side  by  side  the  two  methods  of  describing  the  con- 
figurations of  events  by  coordinates  and  by  the  mutual  intervals,  respectively 

— the  first  for  its  conciseness,  and  the  second  for  its  immediate  absolute 

significance.  It  is  therefore  necessary  to  connect  the  two  modes  of  description 
by  a  formula  which  will  enable  us  to  pass  readily  from  one  to  the  other.  The 

particular  formula  will  depend  on  the  coordinates  chosen  as  well  as  on  the 

absplute  properties  of  the  region  of  the  world  considered ;  but  it  appears  that 

in  all  cases  the  formula  is  included  in  the  following  general  form — 
The  interval  ds  between  two  neighbouring  events  with  coordinates 

(x1}  sc2,  x3,  x4)  and  (a\  +  dxx,  x2  +  dx2,  x3  +  dx3,  x4  +  dx4)  in  any  coordinate-system 
is  given  by 

ds2  =  gu  dx^  +  g22dx2  +  g33dx32  +  g44dx42  +  2gi2dx1dx2  +  2fg13dx1  dx3 

-f  2g14dxldx4  +  2g23dx2dx3  +  2g24dx2dx4  +  2g3idx3dx4   (21), 

where  the  coefficients  gn,  etc.  are  functions  of  xlf  x2,  x3,  x4.    That  is  to  say, 

ds2  is  some  quadratic  function  of  the  differences  of  coordinates. 
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This  is,  of  course,  not  the  most  general  case  conceivable ;  for  example,  we 

might  have  a  world  in  which  the  interval  depended  on  a  general  quartic 

function  of  the  dx's.  But,  as  we  shall  presently  see,  the  quadratic  form  (2'1)  is 
definitely  indicated  by  observation  as  applying  to  the  actual  world.  Moreover 

near  the  end  of  our  task  (§  97)  we  shall  find  in  the  general  theory  of  relation- 
structure  a  precise  reason  why  a  quadratic  function  of  the  coordinate- 
differences  should  have  this  paramount  importance. 

Whilst  the  form  of  the  right-hand  side  of  (2'1)  is  that  required  by 
observation,  the  insertion  of  ds2  on  the  left,  rather  than  some  other  function 
of  ds,  is  merely  a  convention.  The  quantity  ds  is  a  measure  of  the  interval. 

It  is  necessary  to  consider  carefully  how  measure-numbers  are  to  be  affixed 
to  the  different  intervals  occurring  in  nature.  We  have  seen  in  the  last 

section  that  equality  of  intervals  can  be  tested  observationally ;  but  so  far 

as  we  have  yet  gone,  intervals  are  merely  either  equal  or  unequal,  and  their 

differences  have  not  been  further  particularised.  Just  as  wind-strength  may 

be  measured  by  velocit}',  or  by  pressure,  or  by  a  number  on  the  Beaufort 
scale,  so  the  relation  of  extension  between  two  events  could  be  expressed 

numerically  according  to  many  different;  plans.  To  conform  to  (21)  a 

particular  code  of  measure-numbers  must  b<  adopted;  the  nature  and 
advantages  of  this  c^de  will  be  explained  in  th^uext  section. 

The  pure  geometry  associated  with  the  general  formula  (2'1)  was  studied 
by  Riemann,  and  is  generally  called  Riemannian  geometry.  It  includes 
Euclidean  geometry  as  a  special  case. 

3.    Measurement  of  intervals. 

Consider  the  operation  of  proving  by  measurement  that  a  distance  AB  is 

equal  to  a  distance  CD.  We  take  a  configuration  of  events  LMNOP...,  viz.  a 

measuring-scale,  and  lay  it  over  AB,  and  observe  that  A  and  B  coincide  with 

two  particular  events  P,  Q  (scale-divisions)  of  the  configuration.  We  find 

that  the  same  configuration*  can  also  be  arranged  so  that  C  and  D  coincide 
with  P  and  Q  respectively.  Further  we  apply  all  possible  tests  to  the 

measuring-scale  to  see  if  it  has  "changed  "  between  the  two  measurements : 
and  we  are  only  satisfied  that  the  measures  are  correct  if  no  observable 

difference  can  be  detected.  According  to  our  fundamental  axiom,  the  absence 

of  any  observable  difference  between  the  two  configurations  (the  structure  of 

the  measuring-scale  in  its  two  positions)  signifies  that  the  intervals  are  un- 
changed ;  in  particular  the  interval  between  P  and  Q  is  unchanged.  It  follows 

that  the  interval  A  to  B  is  equal  to  the  interval  C  to  D.  We  consider  that  the 

experiment  proves  equality  of  distance;  but  it  is  primarily  a  test  of  equality 
of  interval. 

*  The  logical  point  may  be  noticed  that  the  measuring-scale  in  two  positions  (necessarily  at 
different  times)  represents  the  same  configuration  of  events,  not  the  same  events. 
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In  this  experiment  time  is  not  involved ;  and  we  conclude  that  in  space 

considered  apart  from  time  the  test  of  equality  of  distance  is  equality  of 
interval.  There  is  thus  a  one-to-one  correspondence  of  distances  and  intervals. 

We  may  therefore  adopt  the  same  measure-number  for  the  interval  as  is  in 

general  use  for  the  distance,  thus  settling  our  plan  of  affixing  measure- 
numbers  to  intervals.  It  follows  that,  when  time  is  not  involved,  the  interval 

reduces  to  the  distance. 

It  is  for  this  reason  that  the  quadratic  form  (2"1)  is  needed  in  order  to 
agree  with  observation,  for  it  is  well  known  that  in  three  dimensions  the 

square  of  the  distance  between  two  neighbouring  points  is  a  quadratic 

function  of  their  infinitesimal  coordinate-differences — a  result  depending 
ultimately  on  the  experimental  law  expressed  by  Euclid  I,  47. 

When  time  is  involved  other  appliances  are  used  for  measuring  intervals. 

If  we  have  a  mechanism  capable  of  cyclic  motion,  its  cycles  will  measure 

equal  intervals  provided  the  mechanism,  its  laws  of  behaviour,  and  all  relevant 

surrounding  circumstances,  remain  precisely  similar.  For  the  phrase  "precisely 
similar  "  means  that  no  observable  differences  can  be  detected  in  the  mechanism 
or  its  behaviour ;  and  that,  as  we  have  seen,  requires  that  all  corresponding 
intervals  should  be  equal.  In  particular  the  interval  between  the  events 

marking  the  beginning  and  end  of  the  cycle  is  unaltered.  Thus  a  clock 

primarily  measures  equal  intervals ;  it  is  only  under  more  restricted  conditions 
that  it  also  measures  the  time-coordinate  t. 

In  general  any  repetition  of  an  operation  under  similar  conditions,  but  for 

a  different  time,  place,  orientation  and  velocity  (attendant  circumstances 

which  have  a  relative  but  not  an  absolute  significance*),  tests,  equality  of 
interval. 

It    is    obvious   from    common   experience    that    intervals    which    can   be 

measured  with  a  clock  cannot  be  measured  with  a  scale,  and  vice  versa.    -We 

have  thus  two  varieties  of  intervals,  which  are  provided  for  in  the  formula 

(2*1 ),  since  ds2  may  be  positive  or  negative  and  the  measure  of  the  interval 
will    accordingly  be    expressed    by  a   real    or  an  imaginary   number.     The 

abbreviated  phrase  "  imaginary  interval  "  must  not  be  allowed  to  mislead ; 
there  is  nothing  imaginary  in  the  corresponding  relation ;  it  is  merely  that  in 

our  arbitrary  code  an  imaginary  number  is  assigned  as  its  measure-number. 
We  might  have  adopted  a  different  code,  and  have  taken,  for  example,  the 

antilogarithm   of  ds2  as   the  measure   of  the   interval ;    in  that  case  space- 
intervals  would  have  received  code-numbers  from  1  to  oo ,  and  time-interva. 

numbers  from  0  to  1.    When  we  encounter  V  — 1  in  our  investigations,  w 

must  remember  that  it  has  been  introduced  by  our  choice  of  measure-codi 
and  must  not  think  of  it  as  occurring  with  some  mystical  significance  in  th 
external  world. 

*  They  express  relations  to  events  which  are  not  concerned  in  the  test,  e.g.  to  the  sun  an 
stars. 
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4.    Rectangular  coordinates  and  time. 

Suppose  that  we  have  a  small  region  of  the  world  throughout  which  the 

g's  can  be  treated  as  constants*.  In  that  case  the  right-hand  side  of  (2-l)  can 
be  broken  up  into  the  sum  of  four  squares,  admitting  imaginary  coefficients 

if  necessary.    Thus  writing 

y1  =  ttj#,  +  a,x2  +  a3x3  +  a4#4, 

2/2  =  ̂ 1  +  b2x2  -f  b3x3  +  b4x4"]  etc., 
so  that  dyx  =  aldx1  +  a2dx2  +  a3dx3  +  aAdxA ;  etc., 

we  can  choose  the  constants  au  bly  ...  so  that  (2*1)  becomes 

ds2  =  dyS  +  dy.2+dy.2  +  dy2    (4-1). 

For,  substituting  for  the  dy's  and  comparing  coefficients  with  (2-1),  we  have 
only  10  equations  to  be  satisfied  by  the  16  constants.  There  are  thus  many 
ways  of  making  the  reduction.  Note,  however,  that  the  reduction  to  the  sum 

of  four  squares  of  complete  differentials  is  not  in  general  possible  for  a  large 

region,  where  the  g's  have  to  be  treated  as  functions,  not  constants. 
Consider  all  the  events  for  which  yA  has  some  specified  value.  These  will 

form  a  three-dimensional  world.  Since  c£y4  is  zero  for  every  pair  of  these 
events,  their  mutual  intervals  are  given  by 

ds2  =  dy2  +  dyi  +  dyi    (4-2). 
But  this  is  exactly  like  familiar  space  in  which  the  interval  (which  we  have 

shown  to  be  the  same  as  the  distance  for  space  without  time)  is  given  by 

ds2  =  dx2  +  dy2  +  dz2   (4-3), 

where  x,  y,  z  are  rectangular  coordinates. 

Hence  a  section  of  the  world  by  yx  —  const,  will  appear  to  us  as  space,  and 

2/i>  2/2>  y-3  will  appear  to  us  as  rectangular  coordinates.  The  coordinate-frames 

2/i  >  2/2,  y-i,  and  x,  y,  z,  are  examples  of  the  systems  S  and  S'  of  §  1,  for  which 
the  intervals  between  corresponding  pairs  of  mesh-corners  are  equal.  The 
two  systems  are  therefore  exactly  alike  observational ly;  and  if  one  appears 
to  us  to  be  a  rectangular  frame  in  space,  so  also  must  the  other.  One  proviso 

must  be  noted;  the  coordinates  yu  y2,  y3  for  real  events  must  be  real,  as  in 

familiar  space,  otherwise  the  resemblance  would  be  only  formal. 

Granting  this  proviso,  we  have  reduced  the  general  expression  to 

ds2  =  dx2  +  dy2  +  dz2  +  dy42     (4'4), 

where  x,  y,  z  will  be  recognised  by  us  as  rectangular  coordinates  in  space 
Clearly  y4  must  involve  the  time,  otherwise  our  location  of  events  by  the  four 

coordinates  would  be  incomplete ;  but  we  must  not  too  hastily  identify  it 
with  the  time  t. 

*  It  will  be  shown  in  §  3G  that  it  is  always  possible  to  transform  the  coordinates  so  that  the 

first  derivatives  of  the  g's  vanish  at  a  selected  point.  We  shall  suppose  that  this  preliminary 

transformation  has  already  been  made,  in  ordtr  that  the  constancy  of  the  g's  may  be  a  valid 
approximation  through  as  large  a  region  as  possible  round  the  selected  point. 
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I  suppose  that  the  following  would  be  generally  accepted  as  a  satisfactory 

(pre-relativity)  definition  of  equal  time-intervals: — if  we  have  a  mechanism 
capable  of  cyclic  motion,  its  cycles  will  measure  equal  durations  of  time 

anywhere  and  anywhen,  provided  the  mechanism,  its  laws  of  behaviour,  and 
all  outside  influences  remain  precisely  similar.  To  this  the  relativist  would 

add  the  condition  that  the  mechanism  (as  a  whole)  must  be  at  rest  in  the 

space-time  frame  considered,  because  it  is  now  known  that  a  clock  in  motion 

goes  slow  in  comparison  with  a  fixed  clock.  The  non-relativist  does  not  dis- 
agree in  fact,  though  he  takes  a  slightly  different  view ;  he  regards  the  proviso 

that  the  mechanism  must  be  at  rest  as  already  included  in  his  enunciation, 

because  for  him  motion  involves  progress  through  the  aether,  which  (he 
considers)  directly  affects  the  behaviour  of  the  clock,  and  is  one  of  those 

"  outside  influences  "  which  have  to  be  kept  "  precisely  similar." 
Since  then  it  is  agreed  that  the  mechanism  as  a  whole  is  to  be  at  rest, 

and  the  moving  parts  return  to  the  same  positions  after  a  complete  cycle,  we 
shall  have  for  the  two  events  marking  the  beginning  and  end  of  the  cycle 

doc,  dy,  dz  =  0. 

Accordingly  (4'4)  gives  for  this  case 
ds2  =  dy2. 

We  have  seen  in  §  3  that  the  cycles  of  the  mechanism  in  all  cases  correspond 

to  equal  intervals  ds ;  hence  they  correspond  to  equal  values  of  dy^  But  by 
the  above  definition  of  time  they  also  correspond  to  equal  lapses  of  time  dt ; 

hence  we  must  have  dy4  proportional  to  dt,  and  we  express  this  proportion- 
ality by  writing 

'dy4  —  icdt   (4*5), 

where  i=  V—  1,  and  c  is  a  constant.    It  is,  of  course,  possible  that  c  may  be 

an  imaginary  number,  but  provisionally  we  shall  suppose  it  real.    Then  (4'4) 
becomes 

ds2  =  da2  +  dy2  +  dz2  -  c2  dt2    (4-6). 

A  further  discussion  is  necessary  before  it  is  permissible  to  conclude  that 

(4'6)  is  the  most  general  possible  form  for  ds2  in  terms  of  ordinary  space  and 

time  coordinates.    If  we  had  reduced  (2*1)  to  the  rather  more  general  form 

ds2  =  da?  +  dy2  +  dz2  -  c2dt2  -  2cadxdt  -  2c/3dydt  -  2cydzdt  . .  .(4-7), 

this  would  have  agreed  with  (46)  in  the  only  two  cases  yet  discussed,  viz. 

(1)  when  dt  =  0,  and  (2)  when  dx,  dy,  dz  =  0.  To  show  that  this  more  general 
form  is  inadmissible  we  must  examine  pairs  of  events  which  differ  both  in 
time  and  place. 

In  the  preceding  pre-relativity  definition  of  t  our  clocks  had  to  remain 
stationary  and  were  therefore  of  no  use  for  comparing  time  at  different  places. 

What  did  the  pre-relativity  physicist  mean  by  the  difference  of  time  dt 
between  two  events  at  different  places  ?  I  do  not  think  that  we  can  attach 

any  meaning  to  his  hazy  conception  of  what  dt  signified ;  but  we  know  one 

rtf 
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or  two  ways  in  which  he  was  accustomed  to  determine  it.  One  method  which 

he  used  was  that  of  transport  of  chronometers.  Let  us  examine  then  what 

happens  when  we  move  a  clock  from  (xu  0,  0)  at  the  time  tx  to  another  place 
(x2,  0,  0)  at  the  time  t2. 

We  have  seen  that  the  clock,  whether  at  rest  or  in  motion,  provided  it 
remains  a  precisely  similar  mechanism,  records  equal  intervals;  hence  the 

difference  of  the  clock-readings  at  the  beginning  and  end  of  the  journey  will 
be  proportional  to  the  integrated  interval 

•2 

ds    (481). 

If  the  transport  is  made  in  the  direct  line  (dy  =  0,  dz  =  0),  we  shall  have 

according  to  (4"7) 
-  ds2  =  c2dt2  +  2cctdxdt  -  dx2 

2a  dx      1  fdxV) 
=  c2dt2\l  + 

I  c  dt      c-  \dt 

Hence  the  difference  of  the  clock-readings  (4"81)  is  proportional  to 

*'  1±  /.,       2au      w2\* 

where  u  =  dx/dt,  i.e  the  velocity  of  the  clock.  The  integral  will  not  in  general 

reduce  to  U  —  ti\  so  that  the  difference  of  time  at  the  two  places  is  not  given 
correctly  by  the  reading  of  the  clock.  Even  when  a  =  0,  the  moving  clock 
does  not  record  correct  time. 

Now  introduce  the  condition  that  the  velocity  u  is  very  small,  remembering 

that  t2  —  ti  will  then  become  very  large.    Neglecting  u2/c2,  (482)  becomes 

I     dt(  1  +  -  -7-  J         approximately 

=  (t,  —  ti)  +  -(x%  —  #i). c 

The  clock,  if  moved  sufficiently  slowly,  will  record  the  correct  time-difference 

if,  and  only  if,  a  =  0.  Moving  it  in  other  directions,  we  must  have,  similarly, 

/3  =  0,  7  =  0.  Thus  (4*6)  is  the  most  general  formula  for  the  interval,  when 
the  time  at  different  places  is  compared  by  slow  transport  of  clocks  from  one 

place  to  another. 

I  do  not  know  how  far  the  reader  will  be  prepared  to  accept  the  condition 

that  it  must  be  possible  to  correlate  the  times  at  different  places  by  moving 
a  clock  from  one  to  the  other  with  infinitesimal  velocity.  The  method 

employed  in  accurate  work  is  to  send  an  electromagnetic  signal  from  one  to 
the  other,  and  we  shall  see  in  §  11  that  this  leads  to  the  same  formulae.  We 

can  scarcely  consider  that  either  of  these  methods  of  comparing  time  at 

different  places  is  an  essential  part  of  our  primitive  notion  of  time  in  the 

same  way  that  measurement  at  one  place  by  a  cyclic  mechanism  is ;  therefore 
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they  are  best  regarded  as  conventional.  Let  it  be  understood,  however,  that 

although  the  relativity  theory  has  formulated  the  convention  explicitly,  the 

usage  of  the  word  time-difference  for  the  quantity  fixed  by  this  convention  is 
in  accordance  with  the  long  established  practice  in  experimental  physics  and 

astronomy. 

Setting  a  =  0  in  (4*82),  we  see  that  the  accurate  formula  for  the  clock- 
reading  will  be 

•  f  2  dt  (1  -  u*/c2)l       ♦ 

=  (l-r?lc*)Hh-U)   (4-9) 

for  a  uniform  velocity  u.  Thus  a  clock  travelling  with  finite  velocity  gives 

too  small  a  reading — the  clock  goes  slow  compared  with  the  time-reckoning 
conventionally  adopted. 

To  sum  up  the  results  of  this  section,  if  we  choose  coordinates  such  that 

the  general  quadratic  form  reduces  to 

ds2  =  dy,2  +  dy.?  +  dy32  +  dy42    (4-95), 

then  yu  y2,  y3  and  y4  \/—  1  will  represent  ordinary  rectangular  coordinates  and 
time.    If  we  choose  coordinates  for  which 

ds"  =  dyf  +  dyi  +  dy32  4-  dy?  +  2ady1dyi  +  2/3dy2dy4  +  2ydy3dy4 . .  .(4-96), 

these  coordinates  also  will  agree  with  rectangular  coordinates  and  time  so  far 

as  the  more  primitive  notions  of  time  are  concerned ;  but  the  reckoning  by 
this  formula  of  differences  of  time  at  different  places  will  not  agree  with  the 

reckoning  adopted  in  physics  and  astronomy  according  to  long  established 
practice.  For  this  reason  it  would  only  introduce  confusion  to  admit  these 
coordinates  as  a  permissible  space  and  time  system. 

We  who  regard  all  coordinate-frames  as  equally  fictitious  structures  have 

no  special  interest  in  ruling  out  the  more  general  form  (4-96).  It  is  not  a 
question  of  ascribing  greater  significance  to  one  frame  than  to  another,  but 

of  discovering  which  frame  corresponds  to  the  space  and  time  reckoning 
generally  accepted  and  used  in  standard  works  such  as  the  Nautical  Almanac. 

As  far  as  §  14  our  work  will  be  subject  to  the  condition  that  we  are  dealing 

with  a  region  of  the  world  in  which  the  g's  are  constant,  or  approximately 
constant.  A  region  having  this  property  is  called  flat.  The  theory  of  this 

case  is  called  the  "  special "  theory  of  relativity ;  it  was  discussed  by  Einstein 
in  1905 — some  ten  years  before  the  general  theory.  But  it  becomes  much 
simpler  when  regarded  as  a  special  case  of  the  general  theory,  because  it  is 

no  longer  necessary  to  defend  the  conditions  for  its  validity  as  being  essential 

properties  of  space-time.  For  a  given  region  these  conditions  may  hold,  or 
they  may  not.  The  special  theory  applies  only  if  they  hold  ;  other  cases  must 
be  referred  to  the  general  theory. 
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5.    The  Lorentz  transformation. 

Make  the  following  transformation  of  coordinates 

x  =  /3(x'-nt,)>     y  =  y',     z  =  z\     t  =  j3  (f  -  ux/c2)      (51), 

/3=(i-u*/c?yK 

where  u  is  any  real  constant  not  greater  than  c. 

We  have  by  (5"1) 

dx2  -  c2dt2  =  /32  {(dx  -  udtj  -  c2  (df  -  vjx'jc2)2} 

=  j32  \(l  -  *£)  dx'2  -  (c2  -  i*a)  dt'2 

=  dx'2  -  c2dt'2. 
Hence  from  (4-6) 

ds2  =  dx2  +  dy2  +  dz2  -  c2dt2  =  dx'2  +  dy'2  +  dz'2  -  c2dt'2    (52). 
The  accented  and  unaccented  coordinates  give  the  same  formula  for  the 

interval,  so  that  the  intervals  between  corresponding  pairs  of  mesh-corners 
will  be  equal,  and  therefore  in  all  observable  respects  they  will  be  alike.  We 

shall  recognise  x',  y ,  z  as  rectangular  coordinates  in  space,  and  t'  as  the 
associated  time.  We  have  thus  arrived  at  another  possible  way  of  reckoning- 
space  and  time — another  fictitious  space-time  frame,  equivalent  in  all  its 
properties  to  the  original  one.  For  convenience  we  say  that  the  first  reckoning 

is  that  of  an  observer  S  and  the  second  that  of  an  observer  >S",  both  observers 

being  at  rest  in  their  respective  spaces*. 
The  constant  u  is  easily  interpreted.  Since  #  is  at  rest  in  his  own  space, 

his  location  is  given  by  x  =  const.  By  (5-l)  this  becomes,  in  S"s  coordinates, 

x  —  ut'  =  const. ;  that  is  to  say,  S  is  travelling  in  the  ̂ -'-direction  with  velocity  u. 
Accordingly  the  constant  a  is  interpreted  as  the  velocity  of  S  relative  to  S'. 

It  does  not  follow  immediately  that  the  velocity  of  >S"  relative  to  S  is 

—  u;  but  this  can  be  proved  by  algebraical  solution  of  the  equations  (5"1)  to 

determine  x',  y' ,  z' ,  t'.    We  find 

x  =  /3  (x  +  at),     y'  =  y,     z' =  z,     t'  =  /3(t+  ux/c2)      (5'3), 

showing  that  an  interchange  of  S  and  S'  merely  reverses  the  sign  of  u. 
The  essentia]  property  of  the  foregoing  transformation  is  that  it  leaves 

the  formula  for  ds2  unaltered  (5'2),  so  that  the  coordinate-systems  which  it 
connects  are  alike  in  their  properties.  Looking  at  the  matter  more  generally, 
we  have  already  noted  that  the  reduction  to  the  sum  of  four  squares  can  be 

made  in  many  ways,  so  that  we  can  have 

ds2  =  dy2  +  dy?  +  dy32  +  dy,2  =  dy,'2  +  dy!2  +  dy,'2  +  dy/2   (5-4). 

*  This  is  partly  a  matter  of  nomenclature.  A  sentient  observer  can  force  himself  to  "recollt sot 

that  lie  is  moving  "  and  so  adopt  a  space  in  which  he  is  not  at  rest ;  but  he  does  not  so  readily 
adopt  the  time  which  properly  corresponds;  unless  he  uses  the  space ■  time  frame  in  which  he  is 

at  rest,  he  is  likely  to  adopt  a  hybrid  space-time  which  leads  to  inconsistencies.  There  is  no 

ambiguity  if  the  "observer"  is  regarded  as  merely  an  involuntary  measuring  apparatus,  which  by 
the  principles  of  §  4  naturally  partitions  a  space  and  time  with  respect  to  which  it  is  at  rest. 

E.  2 
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The  determination  of  the  necessary  connection  between  any  two  sets  of 

coordinates  satisfying  this  equation  is  a  problem  of  pure  mathematics ;  we 

can  use  freely  the  conceptions  of  four-dimensional  geometry  and  imaginary 
rotations  to  find  this  connection,  whether  the  conceptions  have  any  physical 

significance  or  not.  We  see  from  (5-4)  that  ds  is  the  distance  between  two 
points  in  four-dimensional  Euclidean  space,  the  coordinates  (ylt  y.2,  y3,  y^)  and 

(yi'>  2/2'.  y.',  Vi)  being  rectangular  systems  (real  or  imaginary)  in  that  space. 
Accordingly  these  coordinates  are  related  by  the  general  transformations  from 
one  set  of  rectangular  axes  to  another  in  four  dimensions,  viz.  translations 

and  rotations.  Translation,  or  change  of  origin,  need  not  detain  us  ;  nor  need 

a  rotation  of  the  space-axes  (ylt  y2,  y3)  leaving  time  unaffected.  The  interesting 
case  is  a  rotation  in  which  ?/4  is  involved,  typified  by 

V\  =  V\  cos  #  —  1)1  sin  @>    Vi  —  y{  sin  0  +  yl cos  0' 

Writing  u  =  ic  tan  0,  so  that  ft  =  cos  6,  this  leads  to  the  Lorentz  transforma- 

tion (5-1). 
Thus,  apart  from  obvious  trivial  changes  of  axes,  the  Lorentz  transforma- 

tions are  the  only  ones  which  leave  the  form  (4*6)  unaltered. 
Historically  this  transformation  was  first  obtained  for  the  particular  case 

of  electromagnetic  equations.  Its  more  general  character  was  pointed  out  by 
Einstein  in  1905. 

6.   The  velocity  of  light. 

Consider  a  point  moving  along  the  a>axis  whose  velocity  measured  by  &' 
is  v,  so  that 

<-%   <61>- 

Then  by  (5*1)  its  velocity  measured  by  S  is 

dx       /3  (dx  —  udt') 

dt      fr(dt'-udx'l&) 
V  —  u 

by  (6-1)   (6-2). 
1  —  uv'/c2 

In  non-relativity   kinematics   we   should   have   taken   it  as  axiomatic   that 
v  =  v  —  u. 

If  two  points   move   relatively  to  S'    with    equal  velocities  in   opposite 
directions  +  v  and  -  v,  their  velocities  relative  to  S  are 

V  —XI  .  V  +  u 

and    — 1  -  uv'/c2  1  +  uv'/c2 " 

As  we  should  expect,  these  speeds  are  usually  unequal ;  but  there  is  an  ex- 

ceptional case  when  v  =  c.  The  speeds  relative  to  S  are  then  also  equal,  both 
in  fact  being  equal  to  c. 



5,  6  THE  VELOCITY  OF  LIGHT  19 

Again  it  follows  from  (5"2)  that  when 

(<U\'ffl\-(<h\' 
ds  =  0,  and  hence 

\dt)      \dt)      \dtj 

Thus  when  the  resultant  velocity  relative  to  8'  is  c,  the  velocity  relative  to 
6'  is  also  c,  whatever  the  direction.  We  see  that  the  velocity  c  has  a  unique 
and  very  remarkable  property. 

According  to  the  older  views  of  absolute  time  this  result  appears  incredible. 

Moreover  we  have  not  yet  shown  that  the  formulae  have  practical  significance, 

since  c  might  be  imaginary.  But  experiment  has  revealed  a  real  velocity 

with  this  remarkable  property,  viz.  299,860  km.  per  sec.  We  shall  call  this 
the  fundamental  velocity. 

By  good  fortune  there  is  an  entity — light — which  travels  with  the  funda- 
mental velocity.  It  would  be  a  mistake  to  suppose  that  the  existence  of  such 

an  entity  is  responsible  for  the  prominence  accorded  to  the  fundamental  velocity 

c  in  our  scheme;  but  it  is  helpful  in  rendering  it  more  directly  accessible  to 

experiment.  The  Michelson-Morley  experiment  detected  no  difference  in  the 

velocity  of  light  in  two  directions  at  right  angles.  Six  months  later  the  earth's 
orbital  motion  had  altered  the  observer's  velocity  by  60  km.  per  sec,  corre- 

sponding to  the  change  from  S'  to  S,  and  there  was  still  no  difference.  Hence 
the  velocity  of  light  has  the  distinctive  property  of  the  fundamental  velocity. 

Strictly  speaking  the  Michelson-Morley  experiment  did  not  prove  directly 
that  the  velocity  of  light  was  constant  in  all  directions,  but  that  the  average 

to-and-fro  velocity  was  constant  in  all  directions.  The  experiment  compared 

the  times  of  a  journey  "  there-and-back."  If  v(0)  is  the  velocity  of  light  in 
the  direction  0,  the  experimental  result  is 

11  n  \ 
H — 775    =  const.  =  0 V{6)        V(e+TT) 

1  1  n, 
+  TTT,   r  =  const.  =  U 

•(6-3) 

v'(0)      v{6  +  tt) 

for  all  values  of  6.    The  constancy  has  been  established  to  about  1  part  in  10lu. 
It  is  exceedingly  unlikely  that  the  first  equation  could  hold  unless 

v  (0)  =  v  (6  +  7r)  =  const. ; 

and  it  is  fairly  obvious  that  the  existence  of  the  second  equation  excludes  the 

possibility  altogether.    However,  on  account  of  the  great  importance  of  the 

identification  of  the  fundamental  velocity  with  the  velocity  of  light,  we  give 
a  formal  proof. 

Let  a  ray  travelling  with  velocity  v  traverse  a  distance  R  in  a  direction 
6,  so  that 

dt  =  RJv,     dx  =  R  cos  6,     dy  =  R  sin  9. 
2—2 



20 THE  VELOCITY  OF  LIGHT CH.  I 

Let  the  relative  velocity  of  S  and  S'  be  small  so  that  v?/c*  is  neglected.    Then 

by  (5-3) 
dt'  =  dt  +  udx/c2,     due'  =  dx  +  udt,     dy'  =  dy. 

Writing  8R,  86,  8v  for  the  change  in  R,  6,  v  when  a  transformation  is  made 

to  S"s  system,  we  obtain 

8  (R/v)  =  dt'  -dt  =  uR  cos  6/c2, 
8  (R  cos  6)  =  dx  —  dx  =  uR/v, 

8(Rsm6)  =  dy'-dy=0. 
Whence  the  values  of  8R,  86,  8  (l/v)  are  found  as  follows : 

8R  =  uR  cos  6/v, 

86  =  —  u  sin  6/v, 

'1\  ,/l      1 
=  u  cos  v  —  — 

KVj  \C*       V 

Here  8  (l/v)  refers  to  a  comparison  of  velocities  in  the  directions  6  in  $'s 

system  and  6'  in  S"s  system.  Writing  A  (l/v)  for  a  comparison  when  the 
direction  is  6  in  both  systems 

B6  \v, 

u  sin  6  3   /l" 

d~6 

86 

=  —  cos  6    cos  6  + 

=  -  cos  6  +  \u  sin3  6  ?—, c2  dt/ 
Hence 

U2  sin2  ̂ J ' Hus^aM^(^r^ 
^  (^)     « (^  +  ir)J      a  "  ̂ "  "  3^  (sin2  ̂   Vv2  (6)     v2  (6  +  tt)/ 

By  (6*3)  the  left-hand  side  is  independent  of  6,  and  equal  to  the  constant 
C  —  C.    We  obtain  on  integration 

1  1  C —  C 
(sin2  6 .  log  tan  \6  —  cos  6), 

or 

V2(0)        V2(6+7T)  u 

1  1  C'  -  G 
.  -  (sin2  6 .  log  tan  £  0  -  cos  6). 

v(6)     v(6  +  tt)         G 

It  is  clearly  impossible  that  the  difference  of  l/v  in  opposite  directions  should 

be  a  function  of  6  of  this  form ;  because  the  origin  of  6  is  merely  the  direction 

of  relative  motion  of  S  and  S',  which  may  be  changed  at  will  in  different 
experiments,  and  has  nothing  to  do  with  the  propagation  of  light  relative  to 

8.  Hence  G'  -C  =  0,  and  v  (6)  =  v  (6  +  tt).  Accordingly  by  (6'3)  v  (6)  is  inde- 
pendent of  6;  and  similarly  v'  (6)  is  independent  of  6.  Thus  the  velocity  of 

light  is  uniform  in  all  directions  for  both  observers  and  is  therefore  to  be 

identified  with  the  fundamental  velocity. 

When  this  proof  is  compared  with  the  statement  commonly  (and  correctly) 
made  that  the  equality  of  the  forward  and  backward  velocity  of  light  cannot 
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be  deduced  from  experiment,  regard  must  be  paid  to  the  context.  The  use 

of  the  Michelson-Morley  experiment  to  fill  a  particular  gap  in  a  generally 
deductive  argument  must  not  be  confused  with  its  use  (e.g.  in  Space,  Time 
and  Gravitation)  as  the  basis  of  a  pure  induction  from  experiment.  Here  we 

have  not  even  used  the  fact  that  it  is  a  second-order  experiment.  We  have 
deduced  the  Lorentz  transformation  from  the  fundamental  hypothesis  of  §  1, 

and  have  already  introduced  a  conventional  system  of  time-reckoning  explained 
in  §  4.  The  present  argument  shows  that  the  convention  that  time  is  defined 

by  the  slow  transport  of  chronometers  is  equivalent  to  the  convention  that 
the  forward  velocity  of  light  is  equal  to  the  backward  velocity.  The  proof  of 

this  equivalence  is  mainly  deductive  except  for  one  hiatus — the  connection 

of  the  propagation  of  light  and  the  fundamental  velocity — and  for  that  step 
appeal  is  made  to  the  Michelson-Morley  experiment. 

The  law  of  composition  of  velocities  (6"2)  is  well  illustrated  by  Fizeau's 
experiment  on  the  propagation  of  light  along  a  moving  stream  of  water.  Let 

the  observer  S'  travel  with  the  stream  of  water,  and  let  S  be  a  fixed  observer. 

The  water  is  at  rest  relatively  to  8'  and  the  velocity  of  the  light  relative  to 
him  will  thus  be  the  ordinary  velocity  of  propagation  in  still  water,  viz. 

v  =  c/fi,  where  /x  is  the  refractive  index.  The  velocity  of  the  stream  being  w, 

-  w  is  the  velocity  of  S  relative  to  8' ;  hence  by  (6*2)  the  velocity  v  of  the 
light  relative  to  8  is 

v  +  w         c/fj.  4-  w 
V  ~  1  +  wv'lc-  ~~  1+  w/fic 

=  c//x  +  w(l  —  l///.2)  approximately, 

neglecting  the  square  of  w/c. 

Accordingly  the  velocity  of  the  light  is  not  increased  by  the  full  velocity 

of  the  stream  in  which  it  is  propagated,  but  by  the  fraction  (1  -  l//x2)  w.  For 
water  this  is  about  0*44  w.  The  effect  can  be  measured  by  dividing  a  beam 
of  light  into  two  parts  which  are  sent  in  opposite  directions  round  a  circulating 

stream  of  water.  The  factor  (1  -  l//u,2)  is  known  as  Fresnel's  convection- 
coefficient;  it  was  confirmed  experimentally  by  Fizeau  in  1851. 

If  the  velocity  of  light  in  vacuo  were  a  constant  c  differing  from  the 

fundamental  velocity  c,  the  foregoing  calculation  would  give  for  Fresnel's 
convection-coefficient 

1      cl    \ 

C2  *  /LI2  ' 
Thus  Fizeau's  experiment  provides  independent  evidence  that  the  fundamental 

velocity  is  at  least  approximately  the  same  as  the  velocity  of  light.  In  the  most 

recent  repetitions  of  this  experiment  made  by  Zeeman*  the  agreement  between 

theory  and  observation  is  such  that  c  cannot  differ  from  c  by  more  than  1  part 
in  500. 

*  Amsterdam  Proceedings,  vol.  xvm,  pp.  398  and  1240. 
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7.    Timelike  and  spacelike  intervals. 

We  make  a  slight  change  of  notation,  the  quantity  hitherto  denoted  by 

ds2  being  in  all  subsequent  formulae  replaced  by  —  ds2,  so  that  (4-6)  becomes 

ds2  =  c2dt2  -  dx2  -  dtf  -  dz2    (7-1). 

There  is  no  particular  advantage  in  this  change  of  sign ;  it  is  made  in  order 
to  conform  to  the  customary  notation. 

The  formula  may  give  either  positive  or  negative  values  of  ds2,  so  that  the 
interval  between  real  events  may  be  a  real  or  an  imaginary  number.  We  call 

real  intervals  timelike,  and  imaginary  intervals  spacelike. 

ds\2       „      fdx\2      fdy\2      (dz\2 

■    U) 

=  c2-v2     (7-2), 

where  v  is  the  velocity  of  a  point  describing  the  track  along  which  the  interval 
lies.  The  interval  is  thus  real  or  imaginary  according  as  v  is  less  than  or 

greater  than  c.  Assuming  that  a  material  particle  cannot  travel  faster  than 

light,  the  intervals  along  its  track  must  be  timelike.  We  ourselves  are  limited 
by  material  bodies  and  therefore  can  only  have  direct  experience  of  timelike 
intervals.  We  are  immediately  aware  of  the  passage  of  time  without  the  use 

of  our  external  senses ;  but  we  have  to  infer  from  our  sense  perceptions  the 

existence  of  spacelike  intervals  outside  us. 

From  any  event  x,  y,  z,  t,  intervals  radiate  in  all  directions  to  other  events ; 
and  the  real  and  imaginary  intervals  are  separated  by  the  cone 

0  =  c2dt2  -  dx2  -  dy2  -  dz2, 

which  is  called  the  null-cone.  Since  light  travels  with  velocity  c,  the  track  of 

any  light-pulse  proceeding  from  the  event  lies  on  the  null-cone.  When  the 

g's  are  not  constants  and  the  fundamental  quadratic  form  is  not  reducible  to 
(7'1),  there  is  still  a  null-surface,  given  by  ds=  0  in  (2'1),  which  separates  the 
timelike  and  spacelike  intervals.  There  can  be  little  doubt  that  in  this  case 

also  the  light-tracks  lie  on  the  null-surface,  but  the  property  is  perhaps  scarcely 

self-evident,  and  we  shall  have  to  justify  it  in  more  detail  later. 

The  formula  (6"2)  for  the  composition  of  velocities  in  the  same  straight 
line  may  be  written 

tanh-1  v/c  =  tanh"1  v/c  —  tanh-1  u/c       (7 '3). 

The  quantity  tanh-1  v/c  has  been  called  by  Robb  the  rapidity  corresponding 
to  the  velocity  v.  Thus  (7  3)  shows  that  relative  rapidities  in  the  same  direction 

compound  according  to  the  simple  addition-law.  Since  tanh-1 1  =  oo  ,  the 
velocity  of  light  corresponds  to  infinite  rapidity.  We  cannot  reach  infinite 

rapidity  by  adding  any  finite  number  of  finite  rapidities ;  therefore  we  cannot 

reach  the  velocity  of  light  by  compounding  any  finite  number  of  relative 
velocities  less  than  that  of  light. 



7,  8  TIMELIKE  AND  SPACELIKE  INTERVALS  23 

There  is  an  essential  discontinuity  between  speeds  greater  than  and  less 

than  that  of  light  which  is  illustrated  by  the  following  example.  If  two  points 
move  in  the  same  direction  with  velocities 

Vi  =  c  +  e,     v2  =  c—  e 

respectively,  their  relative  velocity  is  by  (62) 

v-i  —  v2  2e  _  2c2 

1-fl^/c2  =  1  -  (cf-  e2)/c2  ~  T  ' 
which  tends  to  infinity  as  e  is  made  infinitely  small !  If  the  fundamental 

velocity  is  exactly  300,000  km.  per  sec,  and  two  points  move  in  the  same 

direction  with  speeds  of  300,001  and  299,999  km.  per  sec,  the  speed  of  one 

relative  to  the  other  is  180,000,000,000  km.  per  sec.  The  barrier  at  300,000  km. 

per  sec  is  not  to  be  crossed  by  approaching  it.  A  particle  which  is  aiming  to 

reach  a  speed  of  300,001  km.  per  sec.  might  naturally  hope  to  attain  its  object 

by  continually  increasing  its  speed ;  but  when  it  has  reached  299.999  km.  per 

sec,  and  takes  stock  of  the  position,  it  sees  its  goal  very  much  farther  off  than 
when  it  started. 

A  particle  of  matter  is  a  structure  whose  linear  extension  is  timelike.  We 

might  perhaps  imagine  an  analogous  structure  ranged  along  a  spacelike  track. 

That  would  be  an  attempt  to  picture  a  particle  travelling  with  a  velocity 

greater  than  that  of  light ;  but  since  the  structure  would  differ  fundamentally 
from  matter  as  known  to  us,  there  seems  no  reason  to  think  that  it  would  be 

recognised  by  us  as  a  particle  of  matter,  even  if  its  existence  were  possible. 

For  a  suitably  chosen  observer  a  spacelike  track  can  lie  wholly  in  an  instan- 

taneous space.  The  structure  would  exist  along  a  line  in  space  at  one  moment ; 

at  preceding  and  succeeding  moments  it  would  be  non-existent.  Such  instan- 
taneous intrusions  must  profoundly  modify  the  continuity  of  evolution  from 

past  to  future.  In  default  of  any  evidence  of  the  existence  of  these  spacelike 

particles  we  shall  assume  that  they  are  impossible  structures. 

8.    Immediate  consciousness  of  time. 

Our  minds  are  immediately  aware  of  a  "flight  of  time"  without  the  inter- 
vention of  external  senses.  Presumably  there  are  more  or  less  cyclic  processes 

occurring  in  the  brain,  which  play  the  part  of  a  material  clock,  whose  indica- 
tions the  mind  can  read.  The  rough  measures  of  duration  made  by  the  internal 

time-sense  are  of  little  use  for  scientific  purposes,  and  physics  is  accustomed 

to  base  time-reckoning  on  more  precise  external  mechanisms.  It  is,  however, 
desirable  to  examine  the  relation  of  this  more  primitive  notion  of  time  to  the 

scheme  developed  in  physics. 

Much  confusion  has  arisen  from  a  failure  to  realise  that  time  as  currently 

used  in  physics  and  astronomy  deviates  widely  from  the  time  recognised  by 

the  primitive  time-sense.  In  fact  the  time  of  which  we  are  immediately  con- 

scious is  not  in  general  physical  time,  but  the  more  fundamental  quantity 

which  we  have  called  interval  (confined,  however,  to  timelike  intervals). 
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Our  time-sense  is  not  concerned  with  events  outside  our  brains;  it  relates 

only  to  the  linear  chain  of  events  along  our  own  track  through  the  world.  We 

may  learn  from  another  observer  similar  information  as  to  the  time-succession 

of  events  along  his  track.  Further  we  have  inanimate  observers — clocks — 

from  which  we  may  obtain  similar  information  as  to  their  local  time-successions. 
The  combination  of  these  linear  successions  along  different  tracks  into  a  com- 

plete ordering  of  the  events  in  relation  to  one  another  is  a  problem  that 
requires  careful  analysis,  and  is  not  correctly  solved  by  the  haphazard  intuitions 

of  pre-relativity  physics.  Recognising  that  both  clocks  and  time-sense  measure 
ds  between  pairs  of  events  along  their  respective  tracks,  we  see  that  the 

problem  reduces  to  that  which  we  have  already  been  studying,  viz.  to  pass 
from  a  description  in  terms  of  intervals  between  pairs  of  events  to  a  description 
in  terms  of  coordinates. 

The  external  events  which  we  see  appear  to  fall  into  our  own  local 

time-succession ;  but  in  reality  it  is  not  the  events  themselves,  but  the 

sense-impressions  to  which  they  indirectly  give  rise,  which  take  place  in  the 
time-succession  of  our  consciousness.  The  popular  outlook  does  not  trouble  to 
discriminate  between  the  external  events  themselves  and  the  events  constituted 

by  their  light-impressions  on  our  brains ;  and  hence  events  throughout  the 
universe  are  crudely  located  in  our  private  time-sequence.  Through  this  con- 

fusion the  idea  has  arisen  that  the  instants  of  which  we  are  conscious  extend 

so  as  to  include  external  events,  and  are  world-wide  ;  and  the  enduring  universe 
is  supposed  to  consist  of  a  succession  of  instantaneous  states.  This  crude  view 

was  disproved  in  1675  by  Romer's  celebrated  discussion  of  the  eclipses  of 
Jupiter's  satellites ;  and  we  are  no  longer  permitted  to  locate  external  events 
in  the  instant  of  our  visual  perception  of  them.  The  whole  foundation  of  the 

idea  of  world-wide  instants  was  destroyed  250  years  ago,  and  it  seems  strange 
that  it  should  still  survive  in  current  physics.  But,  as  so  often  happens,  the 

theory  was  patched  up  although  its  original  raison  d'etre  had  vanished.  Ob- 
sessed with  the  idea  that  the  external  events  had  to  be  put  somehow  into  the 

instants  of  our  private  consciousness,  the  physicist  succeeded  in  removing 

the  pressing  difficulties  by  placing  them  not  in  the  instant  of  visual  perception 

but  in  a  suitable  preceding  instant.  Physics  borrowed  the  idea  of  world-wide 
instants  from  the  rejected  theory,  and  constructed  mathematical  continuations 

of  the  instants  in  the  consciousness  of  the  observer,  making  in  this  way  time- 

partitions  throughout  the  four-dimensional  world.  We  need  have  no  quarrel 
with  this  very  useful  construction  which  gives  physical  time.  We  only  insist 

that  its  artificial  nature  should  be  recognised,  and  that  the  original  demand 

for  a  world-wide  time  arose  through  a  mistake.  We  should  probably  have 
had  to  invent  universal  time-partitions  in  any  case  in  order  to  obtain  a  com- 

plete mesh-system ;  but  it  might  have  saved  confusion  if  we  had  arrived  at  it 
as  a  deliberate  invention  instead  of  an  inherited  misconception.  If  it  is  found 

that  physical  time  has  properties  which  would  ordinarily  be  regarded  as  con- 
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trary  to  common  sense,  no  surprise  need  be  felt ;  this  highly  technical  construct 

of  physics  is  not  to  be  confounded  with  the  time  of  common  sense.  It  is  im- 
portant for  us  to  discover  the  exact  properties  of  physical  time ;  but  those 

properties  were  put  into  it  by  the  astronomers  who  invented  it. 

9.  The  "3  +  1  dimensional"  world. 

The  constant  c2  in  (7*1)  is  positive  according  to  experiments  made  in 
regions  of  the  world  accessible  to  us.  The  3  minus  signs  with  1  plus  sign 
particularise  the  world  in  a  way  which  we  could  scarcely  have  predicted  from 

first  principles.  H.  Weyl  expresses  this  specialisation  by  saying  that  the  world 
is  3  +  1  dimensional.  Some  entertainment  may  be  derived  by  considering  the 

properties  ofa2  +  2ora4  +  0  dimensional  world.  A  more  serious  question 

is,  Can  the  world  change  its  type  ?  Is  it  possible  that  in  making  the  reduction 

of  (2"1)  to  the  sum  or  difference  of  squares  for  some  region  remote  in  space  or 
time,  we  might  have  4  minus  signs  ?  I  think  not ;  because  if  the  region  exists 

it  must  be  separated  from  our  3+1  dimensional  region  by  some  boundary. 
On  one  side  of  the  boundary  we  have 

ds2  =  -  dx2  -  dy2  -  dz2  +  cx2dt\ 
and  on  the  other  side 

ds2  =  -  dx2  -  dy-  -  dz2  -  c.Ht2. 

The  transition  can  only  occur  through  a  boundary  where 

ds2  =  -dx2-  dy2  -  dz2  +  Qdt2, 

so  that  the  fundamental  velocity  is  zero.    Nothing  can  move  at  the  boundary, 

and  no  influence  can  pass  from  one  side  to  another.    The  supposed  region 

beyond  is  thus  not  in  any  spatio-temporal  relation  to  our  own  universe — which 
is  a  somewhat  pedantic  way  of  saying  that  it  does  not  exist. 

This  barrier  is  more  formidable  than  that  which  stops  the  passage  of  light 

round  the  world  in  de  Sitter's  spherical  space-time  (Space,  Time  and  Gravi- 
tation, p.  160).  The  latter  stoppage  was  relative  to  the  space  and  time  of  a 

distant  observer ;  but  everything  went  on  normally  with  respect  to  the  space 
and  time  of  an  observer  at  the  region  itself.  But  here  we  are  contemplating 
a  barrier  which  does  not  recede  as  it  is  approached. 

The  passage  to  a  2  +  2  dimensional  world  would  occur  through  a  transition 

region  where 
ds2  =-dx2-  dy2  +  Odz2  +  c2dt2. 

Space  here  reduces  to  two  dimensions,  but  there  does  not  appear  to  be  any 

barrier.    The  conditions  on  the  far  side,  where  time  becomes  two-dimensional, 

defy  imagination. 

10.  The  FitzGerald  contraction. 

We  shall  now  consider  some  of  the  consequences  deducible  from  the 
Lorentz  transformation. 

The  first  equation  of  (5-3)  may  be  written 

x'//3  =  x  +  ut, 
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which  shows  that  S,  besides  making  the  allowance  ut  for  the  motion  of  his 

origin,  divides  by  ft  all  lengths  in  the  ̂ -direction  measured  by  8'.  On  the 

other  hand  the  equation  y'  =  y  shows  that  8  accepts  S"s  measures  in  direc- 
tions transverse  to  their  relative  motion.  Let  8'  take  his  standard  metre 

(at  rest  relative  to  him,  and  therefore  moving  relative  to  8)  and  point  it  first 

in  the  transverse  direction  y'  and  then  in  the  longitudinal  direction  x'.  For 

8'  its  length  is  1  metre  in  each  position,  since  it  is  his  standard ;  for  8  the 
length  is  1  metre  in  the  transverse  position  and  1//3  metres  in  the  longitudinal 

position.  Thus  8  finds  that  a  moving  rod  contracts  when  turned  from  the 
transverse  to  the  longitudinal  position. 

The  question  remains,  How  does  the  length  of  this  moving  rod  compare 

with  the  length  of  a  similarly  constituted  rod  at  rest  relative  to  8  ?  The 
answer  is  that  the  transverse  dimensions  are  the  same  whilst  the  longitudinal 

dimensions  are  contracted.  We  can  prove  this  by  a  reductio  ad  absurdum. 

For  suppose  that  a  rod  moving  transversely  were  longer  than  a  similar  rod  at 

rest.  Take  two  similar  transverse  rods  A  and  A'  at  rest  relatively  to  8  and 

8'  respectively.  Then  8  must  regard  A'  as  the  longer,  since  it  is  moving 

relatively  to  him ;  and  S'  must  regard  A  as  the  longer,  since  it  is  moving 
relatively  to  him.  But  this  is  impossible  since,  according  to  the  equation 

y  =  y'}  S  and  8'  agree  as  to  transverse  measures. 
We  see  that  the  Lorentz  transformation  (5'1)  requires  that  (x,  y,  z,  t)  and 

(x',  y,  z' ,  t')  should  be  measured  with  standards  of  identical  material  constitu- 

tion, but  moving  respectively  with  $  and  8'.  This  was  really  implicit  in  our 
deduction  of  the  transformation,  because  the  property  of  the  two  systems 

is  that  they  give  the  same  formula  (5"2)  for  the  interval;  and  the  test  of 
complete  similarity  of  the  standards  is  equality  of  all  corresponding  intervals 
occurring  in  them. 

The  fourth  equation  of  (5*1 )  is 

t  =  /3(tf-  ux'/c2). 

Consider  a  clock  recording  the  time  t',  which  accordingly  is  at  rest  in  S"s 
system  (x  =  const.).    Then  for  any  time-lapse  by  this  clock,  we  have 

since  hx  =  0.  That  is  to  say,  8  does  not  accept  the  time  as  recorded  by  this 
moving  clock,  but  multiplies  its  readings  by  /3,  as  though  the  clock  were 

going  slow.    This  agrees  with  the  result  already  found  in  (4*9). 
It  may  seem  strange  that  we  should  be  able  to  deduce  the  contraction  of 

a  material  rod  and  the  retardation  of  a  material  clock  from  the  general 
geometry  of  space  and  time.  But  it  must  be  remembered  that  the  contraction 

and  retardation  do  not  imply  any  absolute  change  in  the  rod  and  clock.  The 

"  configuration  of  events  "  constituting  the  four-dimensional  structure  which 

we  call  a  rod  is  unaltered ;  all  that  happens  is  that  the  observer's  space  and 
time  partitions  cross  it  in  a  different  direction. 
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Further  we  make  no  prediction  as  to  what  would  happen  to  the  rod  set 

in  motion  in  an  actual  experiment.  There  may  or  may  not  be  an  absolute 

change  of  the  configuration  according  to  the  circumstances  by  which  it  is  set 
in  motion.  Our  results  apply  to  the  case  in  which  the  rod  after  being  set  in 

motion  is  (according  to  all  experimental  tests)  found  to  be  similar  to  the  rod 

in  its  original  state  of  rest*. 
When  a  number  of  phenomena  are  connected  together  it  becomes  some- 

what arbitrary  to  decide  which  is  to  be  regarded  as  the  explanation  of  the 

others.  To  many  it  will  seem  easier  to  regard  the  strange  property  of 

the  fundamental  velocity  as  explained  by  these  differences  of  behaviour  of 

the  observers'  clocks  and  scales.  They  would  say  that  the  observers  arrive 
at  the  same  value  of  the  velocity  of  light  because  they  omit  the  corrections 

which  would  allow  for  the  different  behaviour  of  their  measuring-appliances. 
That  is  the  relative  point  of  view,  in  which  the  relative  quantities,  length, 
time,  etc.,  are  taken  as  fundamental.  From  the  absolute  point  of  view,  which 

has  regard  to  intervals  only,  the  standards  of  the  two  observers  are  equal  and 

behave  similarly ;  the  so-called  explanations  of  the  invariance  of  the  velocity 
of  light  only  lead  us  away  from  the  root  of  the  matter. 

Moreover  the  recognition  of  the  FitzGerald  contraction  does  not  enable 

us  to  avoid  paradox.  From  (5'3)  we  found  that  S "s  longitudinal  measuring- 
rods  were  contracted  relatively  to  those  of  8.  From  (51)  we  can  show  similarly 

that  8'a  rods  are  contracted  relatively  to  those  of  S'.  There  is  complete 

reciprocity  between  S  and  S'.  This  paradox  is  discussed  more  fully  in  Space, 
Time  and  Gravitation,  p.  55. 

1 1 .    Simultaneity  at  different  places. 

It  will  be  seen  from  the  fourth  equation  of  (5*1 ),  viz. 

t  =  /3(t'~  ux'fc2), 

that  events  at  different  places  which  are  simultaneous  for  S'  are  not  in  general 
simultaneous  for  S.    In  fact,  if  dt'  —  0, 

dt  =  -(3udx'/c2    (111). 
It  is  of  some  interest  to  examine  in  detail  how  this  difference  of  reckoning 

of  simultaneity  arises.  It  has  been  explained  in  §  4  that  by  convention  the 

time  at  two  places  is  compared  by  transporting  a  clock  from  one  to  the  other 

with  infinitesimal  velocity.  Our  formulae  are  based  on  this  convention;  and, 

of  course,  (ll'l)  will  only  be  true  if  the  convention  is  adhered  to.  The  fact 

that  infinitesimal  velocity  relative  to  S'  is  not  the  same  as  infinitesimal 

velocity  relative  to  S,  leaves  room  for  the  discrepancy  of  reckoning  of  simul- 

taneity to  creep  in.  Consider  two  points  A  and  B  at  rest  relative  to  S',  and 
distant  x'  apart.    Take  a  clock  at  A  and  move  it  gently  to  B  by  giving  it  an 

*  It  may  be  impossible  to  chaDge  the  motion  of  a  rod  without  causing  a  rise  of  temperature, 

Our  conclusions  will  then  not  apply  until  the  temperature  has  fallen  again,  i.e.  until  the  tempera- 
ture-test shows  that  the  rod  is  precisely  similar  to  the  rod  before  the  change  of  motion. 
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infinitesimal  velocity  du  for  a  time  x'jdu'.  Owing  to  the  motion,  the  clock 

will  by  (4-9)  be  retarded  in  the  ratio  (1  -  du'2/c2)'^;  this  continues  for  a  time 
x'jdu'  and  the  total  loss  is  thus 

{l-(l-du'2/crf}x'/du, 
which  tends  to  zero  when  du'  is  infinitely  small.    S'  may  accordingly  accept 
the  result  of  the  comparison  without  applying  any  correction  for  the  motion 
of  the  clock. 

Now  consider  S's  view  of  this  experiment.  For  him  the  clock  had  already 

a  velocity  u,  and  accordingly  the  time  indicated  by  the  clock  is  only  (1  -  u2/c2)- 
of  the  true  time  for  S.  By  differentiation,  an  additional  velocity  du*  causes 
a  supplementary  loss 

(1  —  u2/c2)  ~ 2  udu/c2  clock  seconds      (H'2) 
per  true  second.  Owing  to  the  FitzGerald  contraction  of  the  length  AB,  the 

distance  to  be  travelled  is  as'//3,  and  the  journey  will  occupy  a  time 

x'jftdu  true  seconds    (11"3). 

Multiplying  (11'2)  and  (11'3),  the  total  loss  due  to  the  journey  is 
ux'/c2  clock  seconds, 

or  fiux'/c2  true  seconds  for  8   (H'4). 

Thus,  whilst  S'  accepts  the  uncorrected  result  of  the  comparison,  S  has  to 

apply  a  correction  fitix'/c2  for  the  disturbance  of  the  chronometer  through 
transport.  This  is  precisely  the  difference  of  their  reckonings  of  simultaneity 

given  by  (11*1). 
In  practice  an  accurate  comparison  of  time  at  different  places  is  made, 

not  by  transporting  chronometers,  but  by  electromagnetic  signals — usually 
wireless  time-signals  for  places  on  the  earth,  and  light-signals  for  places  in 
the  solar  system  or  stellar  universe.  Take  two  clocks  at  A  and  B,  respectively. 

Let  a  signal  leave  A  at  clock-time  tlt  reach  B  at  time  ts  by  the  clock  at  B, 

and  be  reflected  to  reach  A  again  at  time  t2.  The  observer  S',  who  is  at  rest 
relatively  to  the  clocks,  will  conclude  that  the  instant  tj$  at  B  was  simul- 

taneous with  the  instant  |(£i  +  4)  at  A,  because  he  assumes  that  the  forward 

velocity  of  light  is  equal  to  the  backward  velocity.  But  for  S  the  two  clocks 

are  moving  with  velocity  u ;  therefore  he  calculates  that  the  outward  journey 

will  occupy  a  time  x/(c  —  u)  and  the  homeward  journey  a  time  x/(c  +  u).   Now 

x         x(c  +  u)      82x ,  .   =  — ;   r  =  ~T  (c  +  w)> 
c  —  u       c-  —  u2         c2 

x         x  (c  —  u)      S2x  .  .   =  — ^   7T  =  Hr  (c  -  u). 
c  +  u        c2  -u2         c2  ! 

Thus  the  instant  ts  of  arrival  at  B  must  be  taken  as  /32xujc2  later  than  the 

half-way  instant  \(tt  +  t2).    This  correction  applied  by  S,  but  not  by  S',  agrees 
with  (114)  when  we  remember  that  owing  to  the  FitzGerald  contraction 
x  =  x'lfi. 

*  Note  that  du  will  not  be  equal  to  du'. 
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Thus  the  same  difference  in  the  reckoning  of  simultaneity  by  S  and  8' 
appears  whether  we  use  the  method  of  transport  of  clocks  or  of  light-signals. 
In  either  case  a  convention  is  introduced  as  to  the  reckoning  of  time-differences 
at  different  places ;  this  convention  takes  in  the  two  methods  the  alternative 
forms — 

(1)  A  clock  moved  with  infinitesimal  velocity  from  one  place  to  another 
continues  to  read  the  correct  time  at  its  new  station,  or 

(2)  The  forward  velocity  of  light  along  any  line  is  equal  to  the  backward 

velocity*. 
Neither  statement  is  by  itself  a  statement  of  observable  fact,  nor  does  it 

refer  to  any  intrinsic  property  of  clocks  or  of  light ;  it  is  simply  an  announce- 
ment of  the  rule  by  which  we  propose  to  extend  fictitious  time-partitions 

through  the  world.  But  the  mutual  agreement  of  the  two  statements  is  a  fact 

which  could  be  tested  by  observation,  though  owing  to  the  obvious  practical 

difficulties  it  has  not  been  possible  to  verify  it  directly.  We  have  here  given 

a  theoretical  proof  of  the  agreement,  depending  on  the  truth  of  the  funda- 
mental axiom  of  §  1. 

The  two  alternative  forms  of  the  convention  are  closely  connected.  In 

general,  in  any  system  of  time-reckoning,  a  change  du  in  the  velocity  of  a 
clock  involves  a  change  of  rate  proportional  to  du,  but  there  is  a  certain 

turning-point  for  which  the  change  of  rate  is  proportional  to  du2.  In  adopting 
a  time-reckoning  such  that  this  stationary  point  corresponds  to  his  own 
motion,  the  observer  is  imposing  a  symmetry  on  space  and  time  with  respect 

to  himself,  which  may  be  compared  with  the  symmetry  imposed  in  assuming 

a  constant  velocity  of  light  in  all  directions.  Analytically  we  imposed  the 

same  general  symmetry  by  adopting  (46)  instead  of  (4-7)  as  the  form  for  ds2, 
making  our  space-time  reckoning  symmetrical  with  respect  to  the  interval 
and  therefore  with  respect  to  all  observational  criteria. 

12.    Momentum  and  mass. 

Besides  possessing  extension  in  space  and  time,  matter  possesses  inertia. 
We  shall  show  in  due  course  that  inertia,  like  extension,  is  expressible  in  terms 

of  the  interval  relation  ;  but  that  is  a  development  belonging  to  a  later  stage 

of  our  theory.  Meanwhile  we  give  an  elementary  treatment  based  on  the 

empirical  laws  of  conservation  of  momentum  and  energy  rather  than  on  any 

deep-seated  theory  of  the  nature  of  inertia. 
For  the  discussion  of  space  and  time  we  have  made  use  of  certain  ideal 

apparatus  which  can  only  be  imperfectly  realised  in  practice — rigid  scales  ami 

*  The  chief  case  in  which  we  require  for  practical  purposes  an  accurate  convention  as  to  the 
reckoning  of  time  at  places  distant  from  the  earth,  is  in  calculating  the  elements  and  mean 
places  of  planets  and  comets.  In  these  computations  the  velocity  of  light  in  any  direction  is  taken 
to  be  300,000  km.  per  sec,  an  assumption  which  rests  on  the  convention  (2).  All  experimental 

methods  of  measuring  the  velocity  of  light  determine  only  an  average  to-and-fro  velocity. 
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perfect  cyclic  mechanisms  or  clocks,  which  always  remain  similar  configura- 
tions from  the  absolute  point  of  view.  Similarly  for  the  discussion  of  inertia 

we  require  some  ideal  material  object,  say  a  perfectly  elastic  billiard  ball,  whose 

condition  as  regards  inertial  properties  remains  constant  from  an  absolute 

point  of  view.  The  difficulty  that  actual  billiard  balls  are  not  perfectly  elastic 
must  be  surmounted  in  the  same  way  as  the  difficulty  that  actual  scales  are 

not  rigid.  To  the  ideal  billiard  ball  we  can  affix  a  constant  number,  called 

the  invariant  mass*,  which  will  denote  its  absolute  inertial  properties;  and 
this  number  is  supposed  to  remain  unaltered  throughout  the  vicissitudes  of 

its  history,  or,  if  temporarily  disturbed  during  a  collision,  is  restored  at  the 
times  when  we  have  to  examine  the  state  of  the  body. 

With  the  customary  definition  of  momentum,  the  components 

**■    M%    MTt   
<121> 

cannot  satisfy  a  general  law  of  conservation  of  momentum  unless  the  mass  M 
is  allowed  to  vary  with  the  velocity.    But  with  the  slightly  modified  definition 

dec  dy  dz  .,«■„. 
m  -=- ,     m  ~  ,     m  ~r    (All) as  as  as 

the  law  of  conservation  can  be  satisfied  simultaneously  in  all  space-time 
systems,  m  being  an  invariant  number.  This  was  shown  in  Space,  Time  and 

Gravitation,  p.  142. 

Comparing  (12"1)  and  (12*2),  we  have 

M  =  ™%    (12-3). 
We  call  m  the  invariant  mass,  and  M  the  relative  mass,  or  simply  the  mass. 

The  term  "  invariant "  signifies  unchanged  for  any  transformation  of 
coordinates,  and,  in  particular,  the  same  for  all  observers ;  constancy  during 

the  life-history  of  the  body  is  an  additional  property  of  m  attributed  to  our 
ideal  billiard  balls,  but  not  assumed  to  be  true  for  matter  in  general. 

Choosing  units  of  length  and  time  so  that  the  velocity  of  light  is  unity, 

we  have  by  (7*2) 

Hence  by  (12-3) 
M=m{\-v2)-^    (12-4). 

The  mass  increases  with  the  velocity  by  the  same  factor  as  that  which  gives 

the  FitzGerald  contraction;  and  when  v  =  0,  M '=  m.  The  invariant  mass  is 
thus  equal  to  the  mass  at  rest. 

It  is  natural  to  extend  (122)  by  adding  a  fourth  component,  thus 

dx  dy  dz  dt  ,..«-* 

mdS'    mds-    "'5'    mds   <12'5> 
*  Or  proper-mass. 
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By  (123)  the  fourth  component  is  equal  to  M.  Thus  the  momenta  and  mass 

(relative  mass)  form  together  a  symmetrical  expression,  the  momenta  being 

space-components,  and  the  mass  the  time-component.  We  shall  see  later  that 
the  expression  (125)  constitutes  a  vector,  and  the  laws  of  conservation  of 
momentum  and  mass  assert  the  conservation  of  this  vector. 

The  following  is  an  analytical  proof  of  the  law  of  variation  of  mass  with 

velocity  directly  from  the  principle  of  conservation  of  mass  and  momentum. 

Let  Mlt  MS  be  the  mass  of  a  body  as  measured  by  S  and  S'  respectively, 
vu  Vi  being  its  velocity  in  the  ̂ --direction.    Writing 

/^(l-^/c2)-1.     ft'=(l-Vl'2/c2)-*,     /3  =  (l_uVca)-*, 
we  can  easily  verify  from  (6'2)  that 

ftux  =  £&>/- it)    (12-6). 
Let  a  number  of  such  particles  be  moving  in  a  straight  line  subject  to  the 

conservation  of  mass  and  momentum  as  measured  by  S',  viz. 

2i¥,'  and  2il/jV   are  conserved. 
Since  /3  and  u  are  constants  it  follows  that 

S3/1'/3(i'i'  —  u)   is  conserved. 
Therefore  by  (12'6) 

Sif/ft^/ft'   is  conserved      (1271). 
But  since  momentum  must  also  be  conserved  for  the  observer  S 

Sil/jVi    is  conserved      (1272). 

The  results  (1271)  and  (1272)  will  agree  if 

MJfr  =  k'/A', and  it  is  easy  to  see  that  there  can  be  no  other  general  solution.  Hence  for 

different  values  of  v1}  Mx  is  proportional  to  /3X,  or 

M=m(l-v2/c2)~^, 
where  in  is  a  constant  for  the  body. 

It  requires  a  greater  impulse  to  produce  a  given  change  of  velocity  Bv  in 

the  original  direction  of  motion  than  to  produce  an  equal  change  Bw  at  right 
angles  to  it.    For  the  momenta  in  the  two  directions  are  initially 

mv(l  —  v2/c2)~^,     0, 
and  after  a  change  Bv,  Bw,  they  become 

m  (v  +  8v)  [1  -  {(v  +  Bv)2  +  (Sw)2}/c2] " * ,     mBw  [1  -  {(v  +  Bv)*  +  (Bivf}/c2]  "*. 
Hence  to  the  first  order  in  Bv,  Bw  the  changes  of  momentum  are 

m  ( 1  -  v2/c2)  ~%Bv,     m(l-v2/c2)~*  Bw, 
or  M/32Bv,     MBw, 
where  fi  is  the  FitzGerald  factor  for  velocity  v.  The  coefficient  M^  was 

formerly  called  the  longitudinal  mass,  M  being  the  transverse  mass ;  but  the 

longitudinal  mass  is  of  no  particular  importance  in  the  general  theory,  and 

the  term  is  dropping  out  of  use. 
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13.    Energy. 

When  the  units  are  such  that  c  =  1,  we  have 

M=m(l  -v2)-? =  m  +  ̂mvi   approximately    (131), 

if  the  speed  is  small  compared  with  the  velocity  of  light.  The  second  term  is 

the  kinetic  energy,  so  that  the  change  of  mass  is  the  same  as  the  change  of 

energy,  when  the  velocity  alters.  This  suggests  the  identification  of  mass  with 

energy.  It  may  be  recalled  that  in  mechanics  the  total  energy  of  a  system 
is  left  vague  to  the  extent  of  an  arbitrary  additive  constant,  since  only  changes 

of  energy  are  defined.  In  identifying  energy  with  mass  we  fix  the  additive 
constant  m  for  each  body,  and  m  may  be  regarded  as  the  internal  energy  of 
constitution  of  the  body. 

The  approximation  used  in  (13'1)  does  not  invalidate  the  argument. 
Consider  two  ideal  billiard  balls  colliding.  The  conservation  of  mass  (relative 

mass)  states  that 

%m  (1  —  v2)-  2    is  unaltered. 
The  conservation  of  energy  states  that 

2  m  (1  +  |v2)    is  unaltered. 

But  if  both  statements  were  exactly  true  we  should  have  two  equations 

determining  unique  values  of  the  speeds  of  the  two  balls ;  so  that  these  speeds 
could  not  be  altered  by  the  collision.  The  two  laws  are  not  independent,  but 
one  is  an  approximation  to  the  other.  The  first  is  the  accurate  law  since  it  is 

independent  of  the  space-time  frame  of  reference.  Accordingly  the  expression 

|mv2  for  the  kinetic  energy  in  elementary  mechanics  is  only  an  approximation 
in  which  terms  in  v\  etc.  are  neglected. 

When  the  units  of  length  and  time  are  not  resti'icted  by  the  condition 
0  =  1,  the  relation  between  the  mass  M  and  the  energy  E  is 

M=E/c2      ....(13-2). 

Thus  the  energy  corresponding  to  a  gram  is  9 .  1020  ergs.  This  does  not 
affect  the  identity  of  mass  and  energy — that  both  are  measures  of  the  same 

world-condition.  A  world-condition  can  be  examined  by  different  kinds  of 
experimental  tests,  and  the  units  gram  and  erg  are  associated  with  different 

tests  of  the  mass-energy  condition.  But  when  once  the  measure  has  been 
made  it  is  of  no  consequence  to  us  which  of  the  experimental  methods  was 
chosen,  and  grams  or  ergs  can  be  used  indiscriminately  as  the  unit  of  mass. 

In  fact,  measures  made  by  energy-tests  and  by  mass- tests  are  convertible  like 
measures  made  with  a  yard-rule  and  a  metre-rule. 

The  principle  of  conservation  of  mass  has  thus  become  merged  in  the 

principle  of  conservation  of  energy.  But  there  is  another  independent  pheno- 
menon which  perhaps  corresponds  more  nearly  to  the  original  idea  of  Lavoisier 

when  he  enunciated  the  law  of  conservation  of  matter.    I  refer  to  the  per- 
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manence  of  invariant  mass  attributed  to  our  ideal  billiard  balls  but  not 

supposed  to  be  a  general  property  of  matter.  The  conservation  of  m  is  an 

accidental  property  like  rigidity ;  the  conservation  of  M  is  an  invariable  law 
of  nature. 

When  radiant  heat  falls  on  a  billiard  ball  so  that  its  temperature  rises, 

the  increased  energy  of  motion  of  the  molecules  causes  an  increase  of  mass  M. 
The  invariant  mass  m  also  increases  since  it  is  equal  to  M  for  a  body  at  rest. 
There  is  no  violation  of  the  conservation  of  M,  because  the  radiant  heat  has 

mass  M  which  it  transfers  to  the  ball ;  but  we  shall  show  later  that  the 

electromagnetic  waves  have  no  invariant  mass,  and  the  addition  to  m  is 

created  out  of  nothing.    Thus  invariant  mass  is  not  conserved  in  general. 

To  some  extent  we  can  avoid  this  failure  by  taking  the  microscopic  point 

of  view.  The  billiard  ball  can  be  analysed  into  a  very  large  number  of  con- 

stituents— electrons  and  protons — each  of  which  is  believed  to  preserve  the 
same  invariant  mass  for  life.  But  the  invariant  mass  of  the  billiard  ball  is 

not  exactly  equal  to  the  sum  of  the  invariant  masses  of  its  constituents*. 
The  permanence  and  permanent  similarity  of  all  electrons  seems  to  be  the 

modern  equivalent  of  Lavoisier's  "conservation  of  matter."  It  is  still  uncertain 
whether  it  expresses  a  universal  law  of  nature;  and  we  are  willing  to  con- 

template the  possibility  that  occasionally  a  positive  and  negative  electron 

may  coalesce  and  annul  one  another.  In  that  case  the  mass  M  would  pass 
into  the  electromagnetic  waves  generated  by  the  catastrophe,  whereas  the 

invariant  mass  m  would  disappear  altogether.  Again  if  ever  we  are  able  to 

synthesise  helium  out  of  hydrogen,  0-8  per  cent,  of  the  invariant  mass  will 
be  annihilated,  whilst  the  corresponding  proportion  of  relative  mass  will  be 

liberated  as  radiant  energy. 
It  will  thus  be  seen  that  although  in  the  special  problems  considered  the 

quantity  m  is  usually  supposed  to  be  permanent,  its  conservation  belongs  to 

an  altogether  different  order  of  ideas  from  the  universal  conservation  of  M. 

14.    Density  and  temperature. 

Consider  a  volume  of  space  delimited  in  some   invariant  way,  e.g.  the 

content  of  a  material  box.    The  counting  of  a  number  of  discrete  particles 

continually  within  (i.e.  moving  with)  the  box  is  an  absolute  operation ;  let 
the  absolute  number  be  N.    The  volume  V  of  the  box  will  depend  on  the 

space-reckoning,   being   decreased    in    the   ratio  /3   for  an   observer  moving 

relatively  to  the  box  and  particles,  owing  to  the  FitzGerald  contraction  of  one 

of  the  dimensions  of   the  box.    Accordingly   the  particle-density   a  =  Nj  V 
satisfies 

<r'  =  a/3   (H-l), 

*  This  is  because  the  invariant  mass  of  each  electron  is  its  relative  mass  referred  to  axes 

moving  with  it;  the  invariant  mass  of  the  billiard  ball  is  the  relative  mass  referred  to  axes  at  rest 
in  the  billiard  ball  as  a  whole. 

v.  3 
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whore  a  is  the  particle-density  for  an  observer  in  relative  motion,  and  a  the 
particle-density  for  an  observer  at  rest  relative  to  the  particles. 

It  follows  that  the  mass-density  p  obeys  the  equation 

P=PP   (14-2), 
since  the  mass  of  each  particle  is  increased  for  the  moving  observer  in  the 
ratio  /3. 

Quantities  referred  to  the  space-time  system  of  an  observer  moving  with 

the  body  considered  are  often  distinguished  by  the  prefix  proper-  (German, 

Eigen-),  e.g.  proper-length,  proper-volume,  proper-density,  proper-mass  =  in- 
variant mass. 

The  transformation  of  temperature  for  a  moving  observer  does  not  often 

concern  us.  In  general  the  word  obviously  means  proper-temperature,  and 
the  motion  of  the  observer  does  not  enter  into  consideration.  In  thermometry 
and  in  the  theory  of  gases  it  is  essential  to  take  a  standard  with  respect  to 

which  the  matter  is  at  rest  on  the  average,  since  the  indication  of  a  ther- 
mometer moving  rapidly  through  a  fluid  is  of  no  practical  interest.  But 

thermodynamical  temperature  is  defined  by 

dS  =  dMjT   (14  3), 

where  dS  is  the  change  of  entropy  for  a  change  of  energy  dM.  The  tempera- 

ture T  defined  by  this  equation  will  depend  on  the  observer's  frame  of 
reference.  Entropy  is  clearly  meant  to  be  an  invariant,  since  it  depends  on 
the  probability  of  the  statistical  state  of  the  system  compared  with  other 

states  which  might  exist.  Hence  T  must  be  altered  by  motion  in  the  same 

way  as  dM,  that  is  to  say 

T'  =  $T      (14-4). 

But  it  would  be  useless  to  apply  such  a  transformation  to  the  adiabatic  gas- 

equation 

T=  kpy~\ 
for,  in  that  case,  T  is  evidently  intended  to  signify  the  proper-temperature  and 

p  the  proper-density. 
In  general  it  is  unprofitable  to  apply  the  Lorentz  transformation  to  the 

constitutive  equations  of  a  material  medium  and  to  coefficients  occurring  in 

them  (permeability,  specific  inductive  capacity,  elasticity,  velocity  of  sound). 
Such  equations  naturally  take  a  simpler  and  more  significant  form  for  axes 

moving  with  the  matter.  The  transformation  to  moving  axes  introduces  great 

complications  without  any  evident  advantages,  and  is  of  little  interest  except 
as  an  analytical  exercise. 

15.    General  transformations  of  coordinates. 

We  obtain  a  transformation  of  coordinates  by  taking  new  coordinates 

OB\y  ®2>  xz,  xl  which  are  any  four  functions  of  the  old  coordinates  xx,  x2,  x3,  xt. 

Conversely,  xx,  x.2,  x3,  x4  are  functions  of  xx,  x2',  xs',  a?4'.    It  is  assumed  that 
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multiple  values  are  excluded,  at  least  in  the  region  considered,  so  that  values 

of  (xlt  x2,  x3,  x4)  and  (#/,  x2',  x3',  #4')  correspond  one  to  one. 
■II  Xx  —J\  \X\  y  X2  y   X3  ,   X4  )  ,    %2  =J2  \X1  i  ̂2  i   ̂3  i   ̂4  )  )     etC, 

dxl  =  |4  dak  +  |4  dak'  + 1£  dee,'  +  |&  dasi  ;  etc   (151), 

or  it  may  be  written  simply, 

dxx  =  r-4  dxx'  +  ̂ -i  dx2  +  ̂ -2-  cfo?3'  -f  r-4  cfa;/ ;  etc   (152). O0C±  0*&2  uX$  CQC± 

Substituting  from   (15-2)  in  (2-l)  we  see  that  da-  will   be  a  homogeneous 
quadratic  function  of  the  differentials  of  the  new  coordinates ;  and  the  new 

coefficients  gn',  g22',  etc.  could  be  written  down  in  terms  of  the  old,  if  desired. 
For  an  example  consider  the  usual  transformation  to  axes  revolving  with 

constant  angular  velocity  co,  viz. 

x  =  #!  cos  cox4  —  x2  sin  cox4  , 

y  =  x[  sin  cox4'  +  x2'  cos  cox4 
.(15-3). 

Hence 

dx  =  dxx  cos  cox4'  —  dx2'  sin  cox4'  +  co  (—  xx  sin  cox4  —  x2'  cos  cox4')  dx4, 

dy  =  dxx  sin  cox4'  +  dx2' cos cox4'  4-  co (#/ cos cox4'  —  x2' sin cox4') dx4', 

dz  =  dx3', 
dt  =  dx4. 

Taking  units  of  space  and  time  so  that  0  =  1,  we  have  for  our  original  fixed 

coordinates  by  (7*1) 
ds2  =  -dx2-  df  -  dz"  +  dt3. 

Hence,  substituting  the  values  found  above, 

ds2  =  -  dx,'2  -  dx22 -  dx^2  +  {1  -  co2 OV'2  +  x2'2)}  dx4'2 

+  2cox2'dxx  dx4'  —  2ioXi'  dx2'  dx4'   (154). 

Remembering  that  all  observational  differences  of  coordinate-systems  must 
arise  via  the  interval,  this  formula  must  comprise  everything  which  distinguishes 

the  rotating  system  from  a  fixed  system  of  coordinates. 

In  the  transformation  (15*3)  we  have  paid  no  attention  to  any  contraction 
of  the  standards  of  length  or  retardation  of  clocks  due  to  motion  with  the 

rotating  axes.  The  formulae  of  transformation  are  those  of  elementary 

kinematics,  so  that  xx,  x2',  x3',  x4  are  quite  strictly  the  coordinates  used  in 
the  ordinary  theory  of  rotating  axes.  But  it  may  be  suggested  that  elementary 
kinematics  is  now  seen  to  be  rather  crude,  and  that  it  would  be  worth  while 

to  touch  up  the  formulae  (153)  so  as  to  take  account  of  these  small  changes 

of  the  standards.    A  little  consideration  shows  that  the  suggestion   is  im- 
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practicable.  It  was  shown  in  §  4  that  if  a?/,  x£,  xs',  xi  represent  rectangular 
coordinates  and  time  as  partitioned  by  direct  readings  of  scales  and  clocks,  then 

ds*  =  -  dti*  -  dx^  -  dx.;*  +  c2dx4'*   (15-45), 
so  that  coordinates  which  give  any  other  formula  for  the  interval  cannot 

represent  the  immediate  indications  of  scales  and  clocks.  As  shown  at  the 

end  of  §  5,  the  only  transformations  which  give  (1545)  are  Lorentz  trans- 
formations. If  we  wish  to  make  a  transformation  of  a  more  general  kind,  such 

as  that  of  (15'3),  we  must  necessarily  abandon  the  association  of  the  coordinate- 

system  with  uncorrected  scale  and  clock  readings.  It  is  useless  to  try  to 

"improve"  the  transformation  to  rotating  axes,  because  the  supposed  im- 
provement could  only  lead  us  back  to  a  coordinate-system  similar  to  the  fixed 

axes  with  which  we  started. 

The  inappropriateness  of  rotating  axes  to  scale  and  clock  measurements 

can  be  regarded  from  a  physical  point  of  view.  We  cannot  keep  a  scale  or 

clock  at  rest  in  the  rotating  system  unless  we  constrain  it,  i.e.  subject  it  to 

molecular  bombardment — an  "  outside  influence  "  whose  effect  on  the  measure- 
ments must  not  be  ignored. 

In  the  x,  y,  z,  t  system  of  coordinates  the  scale  and  clock  are  the  natural 

equipment  for  exploration.  In  other  systems  they  will,  if  unconstrained,  con- 
tinue to  measure  ds ;  but  the  reading  of  ds  is  no  longer  related  in  a  simple 

way  to  the  differences  of  coordinates  which  we  wish  to  determine ;  it  depends 

on  the  more  complicated  calculations  involved  in  (2*1).  The  scale  and  clock 
to  some  extent  lose  their  pre-eminence,  and  since  they  are  rather  elaborate 

appliances  it  may  be  better  to  refer  to  some  simpler  means  of  exploration. 

We  consider  then  two  simpler  test-objects — the  moving  particle  and  the 

light-pulse. 
In  ordinary  rectangular  coordinates  and  time  x,  y,  z,  t  an  undisturbed 

particle  moves  with   uniform   velocity,   so    that   its   track   is  given    by  the 

equations 

cc  =  a  +  bt,         y  =  c  +  dt,         z  =  e+ft    (15*5), 
i.e.  the  equations  of  a  straight  line  in  four  dimensions.    By  substituting  from 

(15-3)  we  could  find  the  equations  of  the  track  in  rotating  coordinates;  or  by 

substituting  from  (15-2)  we  could  obtain  the  differential  equations  for  any 
desired  coordinates.    But  there  is  another  way  of  proceeding.    The  differential 

equations  of  the  track  may  be  written 

d?x     dhj     dzz     d"t  /1(.m 

ds>>  d&>  d7*'  d*~°    (    b)' 

which  on  integration,  having  regard  to  the  condition  (7'1),  give  equations  (15-5). 
The  equations  (15'6)  are  comprised  in  the  single  statement 

I  ds  is  stationary    (15'7) 

for  all  arbitrary  small  variations  of  the  track  which  vanish  at  the  initial  and 

final  limits — a  well-known  property  of  the  straight  line. 
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In  arriving-  at  (15'7)  we  use  freely  the  geometry  of  the  x,  y,  z,  t  system 

given  by  (7-l)  ;  but  the  final  result  does  not  allude  to  coordinates  at  all,  and 
must  be  unaltered  whatever  system  of  coordinates  we  are  using1.  To  obtain 
explicit  equations  for  the  track  in  any  desired  system  of  coordinates,  we 

substitute  in  (157)  the  appropriate  expression  (21)  for  ds  and  apply  the 
calculus  of  variations.    The  actual  analysis  will  be  given  in  §  28. 

The  track  of  a  light-pulse,  being  a  straight  line  in  four  dimensions,  will 

also  satisfy  (157);  but  the  light-pulse  has  the  special  velocity  c  which  gives 
the  additional  condition  obtained  in  §  7,  viz 

ds  =  0    (15'8). 
Here  again  there  is  no  reference  to  any  coordinates  in  the  final  result. 

We  have  thus  obtained  equations  (15'7)  and  (15*8)  for  the  behaviour  of 
the  moving  particle  and  light-pulse  which  must  hold  good  whatever  the 
coordinate-system  chosen.  The  indications  of  our  two  new  test-bodies  are 
connected  with  the  interval,  just  as  in  §  3  the  indications  of  the  scale  and 
clock  were  connected  with  the  interval.  It  should  be  noticed  however  that 

whereas  the  use  of  the  older  test-bodies  depends  only  on  the  truth  of  the 
fundamental  axiom,  the  use  of  the  new  test-bodies  depends  on  the  truth  of  the 

empirical  laws  of  motion  and  of  light-propagation.  In  a  deductive  theory  this 
appeal  to  empirical  laws  is  a  blemish  which  we  must  seek  to  remove  later. 

16.    Fields  of  force. 

Suppose  that  an  observer  has  chosen  a  definite  system  of  space-coordinates 

and  of  time-reckoning  (x1}  x2,  x3,  x4)  and  that  the  geometry  of  these  is  given  by 

ds2  =  gndx^  +  g22dx£  +  ...  +  2gy2dx1dx2  +   (16*1). 
Let  him  be  under  the  mistaken  impression  that  the  geometry  is 

ds0*  =  -  dx*  -  dx22  -dx32  +  dx42    (16*2), 

that  being  the  geometry  with  which  he  is  most  familiar  in  pure  mathematics. 

We  use  ds0  to  distinguish  his  mistaken  value  of  the  interval.  Since  intervals 

can  be  compared  by  experimental  methods,  he  ought  soon  to  discover  that  his 
ds0  cannot  be  reconciled  with  observational  results,  and  so  realise  his  mistake. 

But  the  mind  does  not  so  readily  get  rid  of  an  obsession.  It  is  more  likely 

that  our  observer  will  continue  in  his  opinion,  and  attribute  the  discrepancy 
of  the  observations  to  some  influence  which  is  present  and  affects  the  behaviour 

of  his  test-bodies.  He  will,  so  to  speak,  introduce  a  supernatural  agency 
which  he  can  blame  for  the  consequences  of  his  mistake.  Let  us  examine 

what  name  he  would  apply  to  this  agency. 

Of  the  four  test-bodies  considered  the  moving  particle  is  in  general  the 
most  sensitive  to  small  changes  of  geometry,  and  it  would  be  by  this  test  that 

the  observer  would  first  discover  discrepancies.  The  path  laid  down  for  it  by 
our  observer  is 

I  ds0  is  stationary, 
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i.e.  a  straight  line  in  the  coordinates  (xlt  x2,  x3,  x4).    The  particle,  of  course, 

pays  no  heed  to  this,  and  moves  in  the  different  track 

/ 
ds  is  stationary. 

Although  apparently  undisturbed  it  deviates  from  "uniform  motion  in  a 

straight  line."  The  name  given  to  any  agency  which  causes  deviation  from 
uniform  motion  in  a  straight  line  is  force  according  to  the  Newtonian  definition 

of  force.  Hence  the  agency  invoked  through  our  observer's  mistake  is  described 
as  a  "  field  of  force." 

The  field  of  force  is  not  always  introduced  by  inadvertence  as  in  the  fore- 

going illustration.  It  is  sometimes  introduced  deliberately  by  the  mathema- 
tician, e.g.  when  he  introduces  the  centrifugal  force.  There  would  be  little 

advantage  and  many  disadvantages  in  banishing  the  phrase  "field  of  force" 
from  our  vocabulary.  We  shall  therefore  regularise  the  procedure  which  our 

observer  has  adopted.  We  call  (16'2)  the  abstract  geometry  of  the  system  of 
coordinates  (xu  x2,  x3,  x4) ;  it  may  be  chosen  arbitrarily  by  the  observer.  The 

natural  geometry  is  (16*1). 

A  field  of  force  represents  the  discrepancy  between  the  natural  geometry  of 

a  coordinate-system  and  the  abstract  geometry  arbitrarily  ascribed  to  it. 
A  field  of  force  thus  arises  from  an  attitude  of  mind.  If  we  do  not  take 

our  coordinate-system  to  be  something  different  from  that  which  it  really  is, 
there  is  no  field  of  force.  If  we  do  not  regard  our  rotating  axes  as  though 

they  were  non-rotating,  there  is  no  centrifugal  force. 
Coordinates  for  which  the  natural  geometry  is 

ds2  =  —  dx2  —  dx22  —  dx3  +  dx42 

are  called  Galilean  coordinates.  They  are  the  same  as  those  we  have  hitherto 

called  ordinary  rectangular  coordinates  and  time  (the  velocity  of  light  being 
unity).  Since  this  geometry  is  familiar  to  us,  and  enters  largely  into  current 

conceptions  of  space,  time  and  mechanics,  we  usually  choose  Galilean  geometry 

when  we  have  to  ascribe  an  abstract  geometry.  Or  we  may  use  slight  modifi- 
cations of  it,  e.g.  substitute  polar  for  rectangular  coordinates. 

It  has  been  shown  in  §  4  that  when  the  g's  are  constants,  coordinates  can 
be  chosen  so  that  Galilean  geometry  is  actually  the  natural  geometry.  There 

is  then  no  need  to  introduce  a  field  of  force  in  order  to  enjoy  our  accustomed 

outlook  ;  and  if  we  deliberately  choose  non-Galilean  coordinates  and  attribute 
to  them  abstract  Galilean  geometry,  we  recognise  the  artificial  character  of 

the  field  of  force  introduced  to  compensate  the  discrepancy.  But  in  the  more 

general  case  it  is  not  possible  to  make  the  reduction  of  §  4  accurately  through- 
out the  region  explored  by  our  experiments;  and  no  Galilean  coordinates 

exist.  In. that  case  it  has  been  usual  to  select  some  system  (prefeiably  an 
approximation  to  a  Galilean  system)  and  ascribe  to  it  the  abstract  geometry 
of  the  Galilean  system.  The  field  of  force  so  introduced  is  called  "  Gravitation." 
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It  should  be  noticed  that  the  rectangular  coordinates  and  time  in  current 

use  can  scarcely  be  regarded  as  a  close  approximation  to  the  Galilean  system, 

since  the  powerful  force  of  terrestrial  gravitation  is  needed  to  compensate 
the  error. 

The  naming  of  coordinates  (e.g.  time)  usually  follows  the  abstract  geometry 

attributed  to  the  system.  In  general  the  natural  geometry  is  of  some  compli- 
cated kind  for  which  no  detailed  nomenclature  is  recognised.  Thus  when  we 

call  a  coordinate  t  the  "time,"  we  may  either  mean  that  it  fulfils  the 
observational  conditions  discussed  in  §  4,  or  we  may  mean  that  any  departure 
from  those  conditions  will  be  ascribed  to  the  interference  of  a  field  of  force. 

In  the  latter  case  "  time "  is  an  arbitrary  name,  useful  because  it  fixes  a 
consequential  nomenclature  of  velocity,  acceleration,  etc. 

To  take  a  special  example,  an  observer  at  a  station  on  the  earth  has  found 

a  particular  set  of  coordinates  cc1,  x2,  x3,  .r4  best  suited  to  his  needs.  He  calls 

them  x,  y,  z,  t  in  the  belief  that  they  are  actually  rectangular  coordinates  and 

time,  and  his  terminology — straight  line,  circle,  density,  uniform  velocity,  etc. — 
follows  from  this  identification.  But,  as  shown  in  §  4,  this  nomenclature  can 

only  agree  with  the  measures  made  by  clocks  and  scales  provided  (1G'2)  is 

satisfied ;  and  if  (16*2)  is  satisfied,  the  tracks  of  undisturbed  particles  must  be 
straight  lines.  Experiment  immediately  shows  that  this  is  not  the  case ;  the 

tracks  of  undisturbed  particles  are  parabolas.  But  instead  of  accepting  the 

verdict  of  experiment  and  admitting  that  xlt  x2,  xz,  &4  ar*1  not  wh°.f  u,e  «un- 
posed  they  were,  our  observer  introduces  a  field  of  force  to  explain  why  his 

test  is  not  fulfilled.  A  certain  part  of  this  field  of  force  might  have  been 

avoided  if  he  had  taken  originally  a  different  set  of  coordinates  (not  rotating 
with  the  earth) ;  and  in  so  far  as  the  field  of  force  arises  on  this  account  it  is 

generally  recognised  that  it  is  a  mathematical  fiction — the  centrifugal  force. 
But  there  is  a  residuum  which  cannot  be  got  rid  of  by  any  choice  of  co- 

ordinates ;  there  exists  no  extensive  coordinate-system  having  the  simple 

properties  which  were  ascribed  to  x,  y,  z,  t.  The  intrinsic  nature  of  space- 
time  near  the  earth  is  not  of  the  kind  which  admits  coordinates  with  Galilean 

geometry.  This  irreducible  field  of  force  constitutes  the  field  of  terrestrial 

gravitation.  The  statement  that  space-time  round  the  earth  is  "  curved  " — 
that  is  to  say,  that  it  is  not  of  the  kind  which  admits  Galilean  coordinates — 
is  not  an  hypothesis ;  it  is  an  equivalent  expression  of  the  observed  fact  that 
an  irreducible  field  of  force  is  present,  having  regard  to  the  Newtonian 
definition  of  force.  It  is  this  fact  of  observation  which  demands  the  intro- 

duction of  non-Galilean  space-time  and  non-Euclidean  space  into  the  theory. 

17.    The  Principle  of  Equivalence. 

In  §  15  we  have  stated  the  laws  of  motion  of  undisturbed  material  particles 

and  of  light-pulses  in  a  form  independent  of  the  coordinates  chosen.  Since 
a  great  deal  will   depend   upon   the  truth   of  these  laws  it  is  desirable  to 
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consider  what  justification  there  is  for  believing  them  to  be  both  accurate 

and  universal.    Three  courses  are  open  : 

(a)  It  will  be  shown  in  Chapters  IV  and  VI  that  these  laws  follow 

rigorously  from  a  more  fundamental  discussion  of  the  nature  of  matter  and 

of  electromagnetic  fields ;  that  is  to  say,  the  hypotheses  underlying  them  may 

be  pushed  a  stage  further  back. 

(6)  The  track  of  a  moving  particle  or  light-pulse  under  specified  initial 
conditions  is  unique,  and  it  does  not  seem  to  be  possible  to  specify  any 

unique  tracks  in  terms  of  intervals  only  other  than  those  given  by  equations 

(15-7)  and  (15'8). 
(c)    We  may  arrive  at  these  laws  by  induction  from  experiment. 
If  we  rely  solely  on  experimental  evidence  we  cannot  claim  exactness  for 

the  laws.  It  goes  without  saying  that  there  always  remains  a  possibility  of 
small  amendments  of  the  laws  too  slight  to  affect  any  observational  tests  yet 

tried.  Belief  in  the  perfect  accuracy  of  (157)  and  (158)  can  only  be  justified 

on  the  theoretical  grounds  (a)  or  (b).  But  the  more  important  consideration 
is  the  universality,  rather  than  the  accuracy,  of  the  experimental  laws ;  we 

have  to  guard  against  a  spurious  generalisation  extended  to  conditions 
intrinsically  dissimilar  from  those  for  which  the  laws  have  been  established 
observationally. 

We  derived  (15*7)  from  the  equations  (15*5)  which  describe  the  observed 
behaviour  of  a  particle  muving  under  no  field  of  force.  We  assume  that  the 
result  holds  in  all  circumstances.  The  risky  point  in  the  generalisation  is  not 

in  introducing  a  field  of  force,  because  that  may  be  due  to  an  attitude  of 
mind  of  which  the  particle  has  no  cognizance.  The  risk  is  in  passing  from 

regions  of  the  world  where  Galilean  coordinates  {x,  y,  z,  t)  are  possible  to 

intrinsically  dissimilar  regions  where  no  such  coordinates  exist — from  flat 

space-time  to  space-time  which  is  not  flat. 
The  Principle  of  Equivalence  asserts  the  legitimacy  of  this  generalisation. 

It  is  essentially  an  hypothesis  to  be  tested  by  experiment  as  opportunity 

offers.  Moreover  it  is  to  be  regarded  as  a  suggestion,  rather  than  a  dogma 
admitting  of  no  exceptions.  It  is  likely  that  some  of  the  phenomena  will  be 

determined  by  comparatively  simple  equations  in  which  the  components  of 

curvature  of  the  world  do  not  appear;  such  equations  will  be  the  same  for 

a  curved  region  as  for  a  flat  region.  It  is  to  these  that  the  Principle  of 

Equivalence  applies.  It  is  a  plausible  suggestion  that  the  undisturbed  motion 

of  a  particle  and  the  propagation  of  light  are  governed  by  laws  of  this  specially 

simple  type;  and  accordingly  (15*7)  and  (15-8)  will  apply  in  all  circumstances. 
But  there  are  more  complex  phenomena  governed  by  equations  in  which  the 

curvatures  of  the  world  are  involved ;  terms  containing  these  curvatures  will 

vanish  in  the  equations  summarising  experiments  made  in  a  flat  region,  and 

would  have  to  be  reinstated  in  passing  to  the  general  equations.  Clearly 
there  must  be  some  phenomena  of  this  kind  which   discriminate   between 
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a  flat  world  and  a  curved  world  ;  otherwise  we  could  have  no  knowledge  of 

world-curvature.    For  these  the  Principle  of  Equivalence  breaks  down. 
The  Principle  of  Equivalence  thus  asserts  that  some  of  the  chief  differential 

equations  of  physics  are  the  same  for  a  curved  region  of  the  world  as  for  an 

osculating  flat  region*.  There  can  be  no  infallible  rule  for  generalising 
experimental  laws;  but  the  Principle  of  Equivalence  offers  a  suggestion  for 
trial,  which  may  be  expected  to  succeed  sometimes,  and  fail  sometimes. 

The  Principle  of  Equivalence  has  played  a  great  part  as  a  guide  in  the 

original  building  up  of  the  generalised  relativity  theory ;  but  now  that  we 
have  reached  the  new  view  of  the  nature  of  the  world  it  has  become  less 

necessary.  Our  present  exposition  is  in  the  main  deductive.  We  start  with 

a  general  theory  of  world-structure  and  work  down  to  the  experimental 
consequences,  so  that  our  progress  is  from  the  general  to  the  special  laws, 
instead  of  vice  versa. 

18.    Retrospect. 

The  investigation  of  the  external  world  in  physics  is  a  quest  for  structure 

rather  than  substance.  A  structure  can  best  be  represented  as  a  complex  of 
relations  and  relata;  and  in  conformity  with  this  we  endeavour  to  reduce  the 

phenomena  to  their  expressions  in  terms  of  the  relations  which  we  call 
intervals  and  the  relata  which  we  call  events. 

If  two  bodies  are  of  identical  structure  as  regards  the  complex  of  interval 

relations,  they  will  be  exactly  similar  as  regards  observational  properties f,  if 
our  fundamental  hypothesis  is  true.  By  this  we  show  that  experimental 
measurements  of  lengths  and  duration  are  equivalent  to  measurements  of  the 
interval  relation. 

To  the  events  we  assign  four  identification-numbers  or  coordinates 
according  to  a  plan  which  is  arbitrary  within  wide  limits.  The  connection 

between  our  physical  measurements  of  interval  and  the  system  of  identification- 

numbers  is  expressed  by  the  general  quadratic  form  (2'1).  In  the  particular 
case  when  these  identification-numbers  can  be  so  assigned  that  the  product 
terms  in  the  quadratic  form  disappear  leaving  only  the  four  squares,  the 

coordinates  have  the  metrical  properties  belonging  to  rectangular  coordinates 

and  time,  and  are  accordingly  so  identified.  If  any  such  system  exists  an 

infinite  number  of  others  exist  connected  with  it  by  the  Lorentz  trans- 
formation, so  that  there  is  no  unique  space-time  frame.  The  relations  of 

these  different  space-time  reckonings  have  been  considered  in  detail.   It  is 

*  The  correct  equations  for  a  curved  world  will  necessarily  include  as  a  special  case  those 

already  obtained  for  a  flat  world.  The  practical  point  on  which  we  seek  the  guidance  of  the 

Principle  of  Equivalence  is  whether  the  equations  already  obtained  for  a  flat  world  will  serve  as 

they  stand  or  will  require  generalisation. 

t  At  present  this  is  limited  to  extensional  properties  (in  both  space  and  time).  It  v\ill  be 
shown  later  that  all  mechanical  properties  are  also  included.  Electromagnetic  properties  require 

separate  consideration. 
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shown  that  there  must  be  a  particular  speed  which  has  the  remarkable 

property  that  its  value  is  the  same  for  all  these  systems ;  and  by  appeal  to 

the  Michelson-Morley  experiment  or  to  Fizeau's  experiment  it  is  found  that 
this  is  a  distinctive  property  of  the  speed  of  light. 

But  it  is  not  possible  throughout  the  world  to  choose  coordinates  fulfilling 
the  current  definitions  of  rectangular  coordinates  and  time.  In  such  cases  we 

usually  relax  the  definitions,  and  attribute  the  failure  of  fulfilment  to  a  field 

of  force  pervading  the  region.  We  have  now  no  definite  guide  in  selecting 
what  coordinates  to  take  as  rectangular  coordinates  and  time ;  for  whatever 

the  discrepancy,  it  can  always  be  ascribed  to  a  suitable  field  of  force.  The 
field  of  force  will  vary  according  to  the  system  of  coordinates  selected;  but  in 
the  general  case  it  is  not  possible  to  get  rid  of  it  altogether  (in  a  large  region) 

by  any  choice  of  coordinates.  This  irreducible  field  of  force  is  ascribed  to 

gravitation.  It  should  be  noticed  that  the  gravitational  influence  of  a  massive 

body  is  not  properly  expressed  by  a  definite  field  of  force,  but  by  the  property 

of  irreducibility  of  the  field  of  force.  We  shall  find  later  that  the  irreducibility 
of  the  field  of  force  is  equivalent  to  what  in  geometrical  nomenclature  is 

called  a  curvature  of  the  continuum  of  space-time. 
For  the  fuller  study  of  these  problems  we  require  a  special  mathematical 

calculus  which  will  now  be  developed  ab  initio. 



CHAPTER  II 

THE  TENSOR  CALCULUS 

19.    Contravariant  and  co variant  vectors. 

We  consider  the  transformation  from  one  system  of  coordinates  x1}  x2,x3,  xA 

to  another  system  .*;/,  x2',  x3,  x4'. 
The  differentials  (dx1}  dx2,  dx3,  dr4)  are  transformed  according  to  the 

equations  (15"2),  viz. 

dxi  =  -s-i  dxx  +  »—  dx2  +  ̂ -i  dx3  +  ~-  dx4 ;  etc. OXi  OXo  ox3  vx4 

which  may  be  written  shortly 

a=i  oxa 

four  equations  being  obtained  by  taking  /u=l,  2,  3,  4,  successively. 
Any  set  of  four  quantities  transformed  according  to  this  law  is  called 

a  contravariant  vector.  Thus  if  (A1,  A2,  A3,  J.4)  becomes  (A1,  A'2,  A'3,  A'*)  in 
the  new  coordinate-system,  where 

A'"=  X  -^A*   (191), 
a  =  ]   0Xa 

then  (A1,  A2,  A3,  A*),  denoted  briefly  as  A1*,  is  a  contravariant  vector.  The 
upper  position  of  the  suffix  (which  is,  of  course,  not  an  exponent)  is  reserved 
to  indicate  contravariant  vectors. 

If  <f>  is  an  invariant  function  of  position,  i.e.  if  it  has  a  fixed  value  at  each 

point  independent  of  the  coordinate-system  employed,  the  four  quantities 

/d_0      d$_     3^     <ty' 
\dx1 '    dx2 '    dx3 '    dx4 

are  transformed  according  to  the  equations 

d(f>       dxx  dcf)       dx2  d(j>       dx3  d(f>       dx4  d(f) 

dxx'     dxi  dx1      dxS  dx2      dx/  dx3      9#/  dxt ' 

which  may  be  written  shortly 

0(f)        i    dxa  dcj> 

dx/     a-i  dx^  dxa  ' Any  set  of  four  quantities  transformed  according  to  this  law  is  called  a 
covariant  vector.   Thus  if  A  p.  is  a  covariant  vector,  its  transformation  law  is 

4      S/v. 

A;=  X  P-,Aa      (19-2). 
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We  have  thus  two  varieties  of  vectors  which  we  distinguish  by  the  upper 

or  lower  position  of  the  suffix.  The  first  illustration  of  a  contra  variant  vector, 

dx  forms  rather  an  awkward  exception  to  the  rule  that  a  lower  suffix  in- 

dicates covariance  and  an  upper  suffix  contravariance.  There  is  no  other 

exception  likely  to  mislead  the  reader,  so  that  it  is  not  difficult  to  keep  in 

mind  this  peculiarity  of  dx^;  but  we  shall  sometimes  find  it  convenient  to 

indicate  its  contravariance  explicitly  by  writing 

dx^={dxY    (19-3). 

A  vector  may  either  be  a  single  set  of  four  quantities  associated  with 

a  special  point  in  space- time,  or  it  may  be  a  set  of  four  functions  varying 

continuously  with  position.  Thus  we  can  have  an  "isolated  vector"  or  a 
"  vector-field." 

For  an  illustration  of  a  covariant  vector  we  considered  the  gradient  of  an 

invariant,  dcfr/dx^;  but  a  covariant  vector  is  not  necessarily  the  gradient  of  an 
invariant. 

The  reader  will  probably  be  already  familiar  with  the  term  vector,  but 
the  distinction  of  covariant  and  contravariant  vectors  will  be  new  to  him. 

This  is  because  in  the  elementary  analysis  only  rectangular  coordinates  are 

contemplated,  and  for  transformations  from  one  rectangular  system  to  another 

the  laws  (19*1)  and  (19'2)  are  equivalent  to  one  another.  From  the  geometrical 
point  of  view,  the  contravariant  vector  is  the  vector  with  which  everyone  is 
familiar;  this  is  because  a  displacement,  or  directed  distance  between  two 

points,  is  regarded  as  representing  (dxlt  dx2,  dx3)*  which,  as  we  have  seen,  is 
contravariant.  The  covariant  vector  is  a  new  conception  which  does  not  so 

easily  lend  itself  to  graphical  illustration. 

20.    The  mathematical  notion  of  a  vector. 

The  formal   definitions  in  the   preceding  section  do  not   help  much  to 

an  understanding  of  what  the  notion  of  a  vector  really  is.    We  shall  try  to 

explain  this  more  fully,  taking  first  the  mathematical  notion  of  a  vector  (with 

which  we  are  most  directly  concerned)  and  leaving  the  more  difficult  physical 
-  notion  to  follow. 

We  have  a  set  of  four  numbers  (A1}  A2,  A3,  A4)  which  we  associate  with 

some  point  (x1}  x.2,  x3,  a?4)  and  with  a  certain  system  of  coordinates.  We  make 

a  change  of  the  coordinate-system,  and  we  ask,  What  will  these  numbers 
become  in  the  new  coordinates  ?  The  question  is  meaningless ;  they  do  not 

automatically  "become"  anything.  Unless  we  interfere  with  them  they  stay 
as  they  were.  But  the  mathematician  may  say  "  When  I  am  using  the 
coordinates  x1}  x2,  x3,  xt,  I  want  to  talk  about  the  numbers  Alt  A2,  A3>  A4; 

and  when  I  am  using  #/,  x2y  x3,  xl  I  find  that  at  the  corresponding  stage  of 

my  work  I  shall  want  to  talk  about  four  different  numbers  A,',  A2,  A3)  A4'. 

The  customary  resolution  of  a  displacement  into  components  in  oblique  directions  assumes 
this. 
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So  for  brevity  I  propose  to  call  both  sets  of  numbers  by  the  same  symbol  ̂ l." 
We  reply  "  That  will  be  all  right,  provided  that  you  tell  us  just  what  numbers 
will  be  denoted  by  ̂l  for  each  of  the  coordinate-systems  you  intend  to  use. 

Unless  you  do  this  we  shall  not  know  what  you  are  talking  about." 
Accordingly  the  mathematician  begins  by  giving  us  a  list  of  the  numbers 

that  £t  will  signify  in  the  different  coordinate-systems.  We  here  denote  these 

numbers  by  letters.    ̂   will  mean* 

X,  Y,  Z  for  certain  rectangular  coordinates  x,  y,  z, 

R,  ®,  <I>  for  certain  polar  coordinates  r,  6,  </>, 

A,  M,  N  for  certain  ellipsoidal  coordinates  X,  //.,  v. 

"  But,"  says  the  mathematician,  "  I  shall  never  finish  at  this  rate.  There  are 
an  infinite  number  of  coordinate-systems  which  I  want  to  use.  I  see  that 
I  must  alter  my  plan.  I  will  give  you  a  general  rule  to  find  the  new  values 

of  j£t  when  you  pass  from  one  coordinate-system  to  another ;  so  that  it  is  only 
necessary  for  me  to  give  you  one  set  of  values  and  you  can  find  all  the  others 

for  yourselves." 
In  mentioning  a  rule  the  mathematician  gives  up  his  arbitrary  power  of 

making  &  mean  anything  according  to  his  fancy  at  the  moment.  He  binds 

himself  down  to  some  kind  of  regularity.  Indeed  we  might  have  suspected 

that  our  orderly-minded  friend  would  have  some  principle  in  his  assignment 
of  different  meanings  to  j£t.  But  even  so,  can  we  make  any  guess  at  the  rule 

he  is  likely  to  adopt  unless  we  have  some  idea  of  the  problem  he  is  working 

at  in  which  ̂   occurs  ?  I  think  we  can  ;  it  is  not  necessary  to  know  anything 
about  the  nature  of  his  problem,  whether  it  relates  to  the  world  of  physics  or 

to  something  purely  conceptual ;  it  is  sufficient  that  we  know  a  little  about 
the  nature  of  a  mathematician. 

What  kind  of  rule  could  he  adopt  ?  Let  us  examine  the  quantities  which 
can  enter  into  it.  There  are  first  the  two  sets  of  numbers  to  be  connected, 

say,  X,  Y,  Z  and  R,  ®,  <J>.  Nothing  has  been  said  as  to  these  being  analytical 
functions  of  any  kind  ;  so  far  as  we  know  they  are  isolated  numbers.  Therefore 

there  can  be  no  question  of  introducing  their  derivatives.  They  are  regarded 

as  located  at  some  point  of  space  (x,  y,  z)  and  (r,  6,  <f>),  otherwise  the  question 

of  coordinates  could  scarcely  arise.  They  are  changed  because  the  coordinate- 
system  has  changed  at  this  point,  and  that  change  is  defined  by  quantities  like 

— ,  r— ^- ,  and  so  on.  The  integral  coordinates  themselves,  x,  y,  z,  r,  6,  6, 
dx    dxdy  or 

cannot  be  involved;  because  they  express  relations  to  a  distant  origin,  whemis 
we  are  concerned  only  with  changes  at  the  spot  where  (X,  Y,  Z)  is  located. 

Thus  the  rule  must  involve  only  the  numbers  X,  Y,  Z,  R,  ®,  <t>  combined 
with  the  mutual  derivatives  of  x,  y,  z,  r,  6,  <f>. 

*  For  convenience  I  take  a  three-dimensional  illustration. 
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One  such  rule  would  be 

dx  dy  dz 

sMx  +  ̂Y  +  ̂Z).   (201). dx  oy  dz 

<s>JAx+f-Y+fz ox         oy  oz 

Applying  the  same  rule  to  the  transformation   from  (r,  6,  <p)  to  (X,  ja,  v) 
we  have 

.       dX  „     dX  „      dX  ,  ^x 

A=frR  +  300  +  S$*      <20'2>' 
whence,  substituting  for  R,  ©,  <J>  from  (20*1)  and  collecting  terms, 

fdXdr     dXdd     dXdcjA  fdX  dr      dXdd      dXdcf>\  y 
\dr  dx     dd  dx     d$  dxj  \dr  By      dd  dy      9</>  dyj 

fdXdr      dXdO      dXdJ)\ 

+  Wdz  +  d0dz'+d4>  dz) 

=l*+p+lz   (^ 
which  is  the  same  formula  as  we  should  have  obtained  by  applying  the  rule 

to  the  direct  transformation  from  (x,  y,  z)  to  (X,  fi,  v).  The  rule  is  thus  self- 
consistent.  But  this  is  a  happy  accident,  pertaining  to  this  particular  rule, 
and  depending  on  the  formula 

dX  _  dX  dr      dXdd      dX  d(f> 

dx      dr  dx      d0  dx     d<f>  dx  ' 
and  amid  the  apparently  infinite  choice  of  formulae  it  will  not  be  easy  to  find 

others  which  have  this  self-consistency. 

The  above  rule  is  that  already  given  for  the  contravariant  vector  (19*1). 
The  rule  for  the  covariant  vector  is  also  self-consistent.  There  do  not  appear 

to  be  any  other  self-consistent  rules  for  the  transformation  of  a  set  of  three 

numbers  (or  four  numbers  for  four  coordinates)  *. 
We  see  then  that  unless  the  mathematician  disregards  the  need  for  self- 

consistency  in  his  rule,  he  must  inevitably  make  his  quantity  @L  either  a 

contravariant  or  a  covariant  vector.  The  choice  between  these  is  entirely  at 

his  discretion.  He  might  obtain  a  wider  choice  by  disregarding  the  property 

of  self-consistency — by  selecting  a  particular  coordinate-system,  x,  y,  z,  and 
insisting  that  values  in  other  coordinate-systems  must  always  be  obtained  by 

""  Except  that  we  may  in  addition  multiply  by  any  power  of  the  Jacobian  of  the  transforma- 
tion.   This  is  self-consistent  because 

fl(s,  V,  z)    9  (r,  d,  <p)  _  d  (x,  y,  z) 

d  (r,  0,  $)  '  d  (K,  p,  v)      d  (X,  n,  v) ' 
Sets  of  numbers  transformed  with  this  additional  multiplication  are  degenerate  cases  of  tensors 
of  higher  rank  considered  later.    See  §§  48,  49. 
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applying  the  rule  immediately  to  X,  Y,  Z,  and  not  permitting  intermediate 

transformations.  In  practice  he  does  not  do  this,  perhaps  because  he  can 

never  make  up  his  mind  that  any  particular  coordinates  are  deserving  of  this 
special  distinction. 

We  see  now  that  a  mathematical  vector  is  a  common  name  for  an  infinite 

number  of  sets  of  quantities,  each  set  being  associated  with  one  of  an  infinite 

number  of  systems  of  coordinates.  The  arbitrariness  in  the  association  is 

removed  by  postulating  that  some  method  is  followed,  and  that  no  one 

system  of  coordinates  is  singled  out  for  special  distinction.  In  technical 

language  the  transformations  must  form  a  Group.  The  quantity  (R,  ®,  <l>) 
is  in  no  sense  the  same  quantity  as  (X,  Y,  Z)\  they  have  a  common  name  and 

a  certain  analytical  connection,  but  the  idea  of  anything  like  identity  is 

entirely  excluded  from  the  mathematical  notion  of  a  vector. 

2 1 .    The  physical  notion  of  a  vector. 

The  components  of  a  force  (X,  Y,  Z),  (X\  Y',  Z'),  etc.  in  different  systems 
of  Cartesian  coordinates,  rectangular  or  oblique,  form  a  contravariant  vector. 
This  is  evident  because  in  elementary  mechanics  a  force  is  resolved  into 

components  according  to  the  parallelogram  law  just  as  a  displacement  dx^  is 
resolved,  and  we  have  seen  that  dx^  is  a  contravariant  vector.  So  far  as  the 

mathematical  notion  of  the  vector  is  concerned,  the  quantities  (X,  Y,  Z)  and 

(X\  Y',  Z')  are  not  to  be  regarded  as  in  any  way  identical ;  but  in  physics 
we  conceive  that  both  quantities  express  some  kind  of  condition  or  relation 
of  the  world,  and  this  condition  is  the  same  whether  expressed  by  (X,  Y,  Z) 

or  by  (X'y  Y',  Z').  The  physical  vector  is  this  vaguely  conceived  entity,  which 
is  independent  of  the  coordinate-system,  and  is  at  the  back  of  our  measure- 

ments of  force. 

A  world-condition  cannot  appear  directly  in  a  mathematical  equation ; 

only  the  measure  of  the  world-condition  can  appear.  Any  number  or  set  of 
numbers  which  can  serve  to  specify  uniquely  a  condition  of  the  world  may 

be  called  a  measure  of  it.  In  using  the  phrase  "  condition  of  the  world  :' 
I  intend  to  be  as  non-committal  as  possible ;  whatever  in  the  external  world 
determines  the  values  of  the  physical  quantities  which  we  observe,  will  be 

included  in  the  phrase. 

The  simplest  case  is  when  the  condition  of  the  world  under  consideration 

can  be  indicated  by  a  single  measure-number.     Take  two  such   conditions 

underlying  respectively  the  wave-length  X  and  period  T  of  a  light-wave.    We 
have  the  equation 

\  =  3A0"T   (211). 

This  equation  holds  only  for  one  particular  plan  of  assigning  measure-numbers 
(the  C.G.S.  system).    But  it  may  be  written  in  the  more  general  form 

\  =  cT    (21-2), 

where  c  is  a  velocity  having  the  value  3 .  1010  in  the  c.G.s.  system.    This 
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comprises  any  number  of  particular  equations  of  the  form  (21'1).  For  each 
measure-plan,  or  system  of  units,  c  has  a  different  numerical  value.  The 

method  of  determining  the  necessary  change  of  c  when  a  new  measure-plan 

is  adopted,  is  well  known  ;  we  assign  to  it  the  dimensions  length  -f-  time,  and 
by  a  simple  rule  we  know  how  it  must  be  changed  when  the  units  of  \  and  T 
are  changed.  For  any  general  equation  the  total  dimensions  of  every  term 

ought  to  be  the  same. 
The  tensor  calculus  extends  this  principle  of  dimensions  to  changes  of 

measure-code  much  more  general  than  mere  changes  of  units.  There  are 

conditions  of  the  world  which  cannot  be  specified  by  a  single  measure-number ; 

some  require  4,  some  16,  some  64,  etc.,  measure-numbers.  Their  variety  is 
such  that  they  cannot  be  arranged  in  a  single  serial  order.  Consider  then  an 

equation  between  the  measure-numbers  of  two  conditions  of  the  world  which 

require  4  measure-numbers.  The  equation,  if  it  is  of  the  necessary  general  type, 
must  hold  for  every  possible  measure-code ;  this  will  be  the  case  if,  when  we 
transform  the  measure-code,  both  sides  of  the  equation  are  transformed  in 
the  same  way,  i.e.  if  we  have  to  perform  the  same  series  of  mathematical 

operations  on  both  sides. 

We  can  here  make  use  of  the  mathematical  vector  of  §  20.  Let  our  equa- 
tion in  some  measure-code  be 

AltA2,A3,  Ai  =  BuB2,  B3>  B4   (213). 

Now  let  us  change  the  code  so  that  the  left-hand  side  becomes  any  four 

numbers  A^,  A2',  A3\Al.  We  identify  this  with  the  transformation  of  a  co- 
variant  vector  by  associating  with  the  change  of  measure-code  the  corresponding 

transformation  of  coordinates  from  x^  to  #/  as  in  (19*2).  But  since  (2 13)  is 
to  hold  in  all  measure-codes,  the  transformation  of  the  right-hand  side  must 
involve  the  same  set  of  operations ;  and  the  change  from  B1}  B2,  Bs,  B4  to  i?/, 

B2,  B3,  Z?4'  will  also  be  the  transformation  of  a  covariant  vector  associated 
with  the  same  transformation  of  coordinates  from  x^  to  #/. 

We  thus  arrive  at  the  result  that  in  an  equation  which  is  independent 

of  the  measure-plan  both  sides  must  be  covariant  or  both  contra  variant 
vectors.  We  shall  extend  this  later  to  conditions  expressed  by  16,  64,  ..., 

measure-numbers ;  the  general  rule  is  that  both  sides  of  the  equation  must 
have  the  same  elements  of  covariance  and  contravariance.  Covariance  and 

contravariance  are  a  kind  of  generalised  dimension,  showing  how  the  measure 
of  one  condition  of  the  world  is  changed  when  the  measure  of  another  con- 

dition is  changed.  The  ordinary  theory  of  change  of  units  is  merely  an 
elementary  case  of  this. 

Coordinates  are  the  identification-numbers  of  the  points  of  space-time. 
There  is  no  fundamental  distinction  between  measure-numbers  and  identifica- 

tion-numbers, so  that  Ave  may  regard  the  change  of  coordinates  as  part  of  the 
general  change  applied  to  all  measure-numbers.    The  change  of  coordinates 
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no  longer  leads  the  way,  as  it  did  in  §  20 ;  it  is  placed  on  the  same  level  with 
the  other  changes  of  measure. 

When  we  applied  a  change  of  measure-code  to  (21 -3)  we  associated  with 
it  a  change  of  coordinates ;  but  it  is  to  be  noted  that  the  change  of  coordinates 
was  then  ambiguous,  since  the  two  sides  of  the  equation  might  have  been 

taken  as  both  contravariant  instead  of  both  covariant ;  and  further  the  change 

did  not  refer  explicitly  to  coordinates  in  the  world — it  was  a  mere  entry  in 

the  mathematician's  note-book  in  order  that  he  might  have  the  satisfaction 
of  calling  A^  and  B^  vectors  consistently  with  his  definition.  Now  if  the 

measure-plan  of  a  condition  A^  is  changed  the  measures  of  other  conditions 
and  relations  associated  with  it  will  be  changed.  Among  these  is  a  certain 

relation  of  two  events  which  we  may  call  the  aspect*  of  one  from  the  other; 
and  this  relation  requires  four  measure-numbers  to  specify  it.  Somewhat 
arbitrarily  we  decide  to  make  the  aspect  a  contravariant  vector,  and  the 

measure-numbers  assigned  to  it  are  denoted  by  (dx)*.  That  settles  the  am- 
biguity once  for  all.  For  obscure  psychological  reasons  the  mind  has  singled 

out  this  transcendental  relation  of  aspect  for  graphical  representation,  so  that 

it  is  conceived  by  us  as  a  displacement  or  difference  of  location  in  a  frame  of 

space-time.  Its  measure-numbers  (dxY  are  represented  graphically  as  coordi- 
nate-differences dx,i,  and  so  for  each  measure-code  of  aspect  we  get  a  corre- 

sponding coordinate-frame  of  location.  This  "real"  coordinate-frame  can  now 
replace  the  abstract  frame  in  the  mathematician's  note-book,  because  as  we 
have  seen  in  (19'1)  the  actual  transformation  of  coordinates  resulting  in  a 
change  ofcfo^is  the  same  as  the  transformation  associated  with  the  change  of 
dxp  according  to  the  law  of  a  contravariant  vector. 

I  do  not  think  it  is  too  extravagant  to  claim  that  the  method  of  the  tensor 

calculus,  which  presents  all  physical  equations  in  a  form  independent  of  the 

choice  of  measure- code,  is  the  only  possible  means  of  studying  the  conditions 
of  the  world  which  are  at  the  basis  of  physical  phenomena.  The  physicist  is 
accustomed  to  insist  (sometimes  quite  unnecessarily)  that  all  equations  should 

be  stated  in  a  form  independent  of  the  units  employed.  Whether  this  is 

desirable  depends  on  the  purpose  of  the  formulae.  But  whatever  additional 

insight  into  underlying  causes  is  gained  by  stating  equations  in  a  form  inde- 
pendent of  units,  must  be  gained  to  a  far  greater  degree  by  stating  them  in 

a  form  altogether  independent  of  the  measure-code.  An  equation  of  this 
general  form  is  called  a  tensor  equation. 

When  the  physicist  is  attacking  the  everyday  problems  of  his  subject,  he 

may  use  any  form  of  the  equations — any  specialised  measure-plan — which 
will  shorten  the  labour  of  calculation ;  for  in  these  problems  he  is  concerned 

with   the   outward  significance  rather  than  the   inward  significance   of  his 

*  The  relation  of  aspect  (or  in  its  graphical  conception  displacement)  with  four  measure- 
numhers  seems  to  be  derived  from  the  relation  of  interval  with  one  measure-number,  by  taking 
account  not  only  of  the  mutual  interval  between  the  two  events  but  also  of  their  intervals  from 

all  surrounding  events. 

E.  4 
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formulae.    But  once  in  a  while  he  turns  to  consider  their  inward  significance 

  to  consider  that  relation  of  things  in  the  world-structure  which  is  the 

orio-in  of  his  formulae.  The  only  intelligible  idea  we  can  form  of  such  a 
structural  relation  is  that  it  exists  between  the  world-conditions  themselves 

and  not  between  the  measure-numbers  of  a  particular  code.  A  law  of  nature 

resolves  itself  into  a  constant  relation,  or  even  an  identity,  of  the  two  world- 
conditions  to  which  the  different  classes  of  observed  quantities  forming  the 

two  sides  of  the  equation  are  traceable.  Such  a  constant  relation  independent 

of  measure-code  is  only  to  be  expressed  by  a  tensor  equation. 
It  may  be  remarked  that  if  we  take  a  force  (X,  Y,  Z)  and  transform  it  to 

polar  coordinates,  whether  as  a  covariant  or  a  contravariant  vector,  in  neither 

case  do  we  obtain  the  quantities  called  polar  components  in  elementary 

mechanics.  The  latter  are  not  in  our  view  the  true  polar  components ;  they 
are  merely  rectangular  components  in  three  new  directions,  viz.  radial  and 

transverse.  In  general  the  elementary  definitions  of  physical  quantities  do 

not  contemplate  other  than  rectangular  components,  and  they  may  need  to 

be  supplemented  before  we  can  decide  whether  the  physical  vector  is  covariant 

or  contravariant.  Thus  if  we  define  force  as  "  mass  x  acceleration,"  the  force 

turns  out  to  be  contravariant ;  but  if  we  define  it  by  "work  =  force  x  displace- 

ment," the  force  is  covariant.  With  the  latter  definition,  however,  we  have 
to  abandon  the  method  of  resolution  into  oblique  components  adopted  in 
elementary  mechanics.  N 

In  what  follows  it  is  generally  sufficient  to  confine  attention  to  the  mathe- 
matical notion  of  a  vector.  Some  idea  of  the  physical  notion  will  probably 

give  greater  insight,  but  is  not  necessary  for  the  formal  proofs. 

22.    The  summation  convention. 

We  shall  adopt  the  convention  that  whenever  a  literal  suffix  appears  twice 
in  a  term  that  term  is  to  be  summed  for  values  of  the  suffix  1,  2,  3,  4.  For 

example,  (21)  will  be  written 

ds"  =  gliVdxIILdxv         (g^  =  g^)    (221). 
Here,  since  fx  and  v  each  appear  twice,  the  summation 

4        4 

X   2 

is  indicated ;  and  the  result  written  out  in  full  gives  (21). 
Again,  in  the  equation 

A     '  _    °X<>-      a ■£*-v.    —  <->       '  am 

OXft 

the  summation  on  the  right  is  with  respect  to  a  only  (//,  appearing  only  once). 

The  equation  is  equivalent  to  (19'2). 
The  convention  is  not  merely  an  abbreviation  but  an  immense  aid  to  the 

analysis,  giving  it  an  impetus  which  is  nearly  always  in  a  profitable  direction. 
Summations  occur  in  our  investigations  without  waiting  for  our  tardy  approval. 
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A  useful  rule  may  be  noted — 
Any  literal  suffix  appearing  twice  in  a  term  is  a  dummy  suffix,  which  may 

be  changed  freely  to  any  other  letter  not  already  appropriated  in  that  term. 

Two  or  more  dummy  suffixes  can  be  interchanged*.    For  example 

9<*  dx/dxj  dxK'     9aP  dx^dxj  dxK   ^Z  L) 
by  interchanging  the  dummy  suffixes  a  and  f3,  remembering  that  g^  =  gafi. 

For  a  further  illustration  we  shall  prove  that 

VXft    OXa       ̂    (iXy_       .  .  _  J 

dx~!dxv~lx~v~    '     "P^n    (22-3). 
=  1,     if  fi  —  i> 

The  left-hand  side  written  in  full  is 

dXp  dxx'      dxp  dx2'      dx^  dxj      dx^  dx4' 
dxt'  dxv      dx2'  dxv      dxs'  dxv      dx4'  dxv  ' 

which  by  the  usual  theory  gives  the  change  dx^  consequent  on  a  change  dxv. 

But  x^  and  xv  are  coordinates  of  the  same  system,  so  that  their  variations  are 
independent ;  hence  dx^  is  zero  unless  #M  and  xv  are  the  same  coordinate,  in 

which  case,  of  course,  dx^  =  dxv.    Thus  the  theorem  is  proved. 

The  multiplier  ̂ — -,  ̂ -  acts  as  a  substitution-operator.    That  is  to  say  if 

A  (/jl)  is  any  expression  involving  the  suffix  /x 

s^w-^w   (22'*>- 
For  on  the  left  the  summation  with  respect  to  fi  gives  four  terms  corre- 

sponding to  the  values  1,  2,  3,  4  of  fi.  One  of  these  values  will  agree  with  v. 

Denote  the  other  three  values  by  a,  r,  p.    Then  by  (22*3)  the  result  is 
1 .  A  (v)  +  0 .  A  (<r)  +  0 .  A  (t)  +  0 .  A  (/>) 

The  multiplier  accordingly  has  the  effect  of  substituting  v  for  /jl  in  the  multi- 
plicand. 

23.    Tensors. 

The  two  laws  of  transformation  given  in  §  19  are  now  written — 

dx  ' 

Cont
rava

rian
t  

vec
tor

s  

A'"-  =  —■  Aa   

 

(231
1). 

O0Ca 

Covariant  vectors  A^  =  --^  Aa   (23"12). 

OXy, 

We  can  denote  by  AhV  a  quantity  with  16  components  obtained  by  giving 

fi  and  v  the  values  from  1  to  4  independently.    Similarly  A^  has  64  com- 

*  At  first  we  shall  call  attention  to  such  changes  when  we  employ  them  ;  but  the  reader  will 
be  expected  gradually  to  become  familiar  with  the  device  as  a  common  process  of  manipulation. 

.9. 
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ponents.  By  a  generalisation  of  the  foregoing  transformation  laws  we  classify 

quantities  of  this  kind  as  follows — 

Contravariant  tensors        A'""  =  ̂   ̂   A^   (23*21). 

Covariant  tensors  A'  ̂   =  -~-p  ~—,  Aap   (23-22). 

Mixed  tensors  A~  =  ̂'^A*    (23'23)" 
The  above  are  called  tensors  of  the  second  rank.  We  have  similar  laws  for 

tensors  of  higher  ranks.    E.g. 

.IT    _  9^a  dxp  Sa-y  <W^s  (23-3) 
^     dx^  dxv'  dxj  dxs        y 

It  may  be  worth  while  to  remind  the  reader  that  (23'3)  typifies  256  distinct 
equations  each  with  a  sum  of  256  terms  on  the  right-hand  side. 

It  is  easily  shown  that  these  transformation  laws  fulfil  the  condition  of 

self-consistency  explained  in  §  20,  and  it  is  for  this  reason  that  quantities 
governed  by  them  are  selected  for  special  nomenclature. 

If  a  tensor  vanishes,  i.e.  if  all  its  components  vanish,  in  one  system  of 
coordinates,  it  will  continue  to  vanish  when  any  other  system  of  coordinates 

is  substituted.  This  is  clear  from  the  linearity  of  the  above  transformation 
laws. 

Evidently  the  sum  of  two  tensors  of  the  same  covariant  or  contravariant 

character  is  a  tensor.  Hence  a  law  expressed  by  the  vanishing  of  the  sum  of 

a  number  of  tensors,  or  by  the  equality  of  two  tensors  of  the  same  kind,  will 

be  independent  of  the  coordinate-system  used. 

The  product  of  two  tensors  such  as  A^v  and  Bl  is  a  tensor  of  the  character 

indicated  by  A^.  This  is  proved  by  showing  that  the  transformation  law  of 

the  product  is  the  same  as  (23'3). 
The  general  term  tensor  includes  vectors  (tensors  of  the  first  rank)  and 

invariants  or  scalars  *  (tensors  of  zero  rank). 
A  tensor  of  the  second  or  higher  rank  need  not  be  expressible  as  a  product 

of  two  tensors  of  lower  rank. 

A  simple  example  of  an  expression  of  the  second  rank  is  afforded  by  the 

stresses  in  a  solid  or  viscous  fluid.  The  component  of  stress  denoted  by  pxy 

is  the  traction  in  the  ̂ -direction  across  an  interface  perpendicular  to  the 

^-direction.    Each  component  is  thus  associated  with  two  directions. 

24.    Inner  multiplication  and  contraction.    The  quotient  law. 

If  we  multiply  A^by  Bv  we  obtain  sixteen  quantities  AjB1,  A1B2,  A2B1, ... 
constituting  a  mixed  tensor.     Suppose  that  we  wish  to  consider  the  four 

*  Scalar  is  a  synonym  for  invariant.  I  generally  use  the  latter  word  as  the  more  self- 
explanatory. 



23,  24     INNER  MULTIPLICATION  AND  CONTRACTION.    QUOTIENT  LAW      53 

"diagonal"  terms  AxBl,  A.2B2,  A3B3,  AXBX;  we  naturally  try  to  abbreviate 
these  by  writing  them  A^B^.  But  by  the  summation  convention  A^B**  stands 
for  the  sum  of  the  four  quantities.  The  convention  is  right.  We  have  no  use 

for  them  individually  since  they  do  not  form  a  vector;  but  the  sum  is  of  great 

importance. 

A^B^  is  called  the  inner  product  of  the  two  vectors,  in  contrast  to  the 

ordinary  or  outer  product  A^B". 
In  rectangular  coordinates  the  inner  product  coincides  with  the  scalar- 

product  denned  in  the  well-known  elementary  theory  of  vectors  ;  but  the  outer 

product  is  not  the  so-called  vector-product  of  the  elementary  theory. 

By  a  similar  process  we  can  form  from  any  mixed  tensor  A  \V<T  a  "  con- 

tracted*" tensor  A^v<r,  which  is  two  ranks  lower  since  a  has  now  become  a 

dummy  suffix.    To  prove  that  A^va  is  a  tensor,  we  set  t  =  <r  in  (23-3), 

a,*        d%a  d%p   dxy  dxa'    .5 
M*"7  _  daP  dr"7  dr7  ̂ r7       Py' U^U,       Udjy       UlASfj  UtAsft 

The  substitution  operator  — -,  -^-  changes  S  to  7  in  Aaf3y  by  (22*4).    Hence OXfj    OX§ 

a,<t      _    "~a   "~p      a  y 

dxa  dxfi 

0*X,-uf       Oik  if 

Comparing  with  the  transformation  law  (23'22)  we  see  that  A°va.  is  a  covariant 
tensor  of  the  second  rank.  Of  course,  the  dummy  suffixes  7  and  a  are  equi- 
valent. 

Similarly,  setting  v  =  fi  in  (23'23), 

A  in         UK*  VXH     J  /3  _    Aa=    A* 

M      dx^'dxp      a         a         "' 

that  is  to  say  A*  is  unaltered  by  a  transformation  of  coordinates.  Hence  it 
is  an  invariant. 

By  the  same  method  we  can  show  that  A^B**,  A^v,  A^B*  are  invariants. 
In  general  when  an  upper  and  lower  suffix  are  the  same  the  corresponding 
covariant  and  contravariant  qualities  cancel  out.  If  all  suffixes  cancel  out  in 

this  way,  the  expression  must  be  invariant.    The  identified  suffixes  must  be 

of  opposite  characters;  the  expression  A\a9  is  not  a  tensor,  and  no  interest 
is  attached  to  it. 

We  see  that  the  suffixes  keep  a  tall}'  of  what  we  have  called  the  generalised 
dimensions  of  the  terms  in  our  equations.  After  cancelling  out  any  suffixes 

which  appear  in  both  upper  and  lower  positions,  the  remaining  suffixes  must 
appear  in  the  same  position  in  each  term  of  an  equation.  When  that  is 

satisfied  each  term  will  undergo  the  same  set  of  operations  when  a  transforma- 
tion of  coordinates  is  made,  and  the  equation  will  continue  to  hold  in  all 

*  German,  verjfingt. 
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systems  of  coordinates.  This  may  be  compared  with  the  well-known  condition 
that  each  term  must  have  the  same  physical  dimensions,  so  that  it  undergoes 

multiplication  by  the  same  factor  when  a  change  of  units  is  made  and  the 

equation  continues  to  hold  in  all  systems  of  units. 
Just  as  we  can  infer  the  physical  dimensions  of  some  novel  entity  entering 

into  a  physical  equation,  so  we  can  infer  the  contravariant  and  covariant 
dimensions  of  an  expression  whose  character  was  hitherto  unknown.  For 

example,  if  the  equation  is 

A{tiv)Bva=CIL9   (24-1), 

where  the  nature  of  A  (fiv)  is  not  known  initially,  we  see  that  A  {/xv)  must 

be  a  tensor  of  the  character  A^,  so  as  to  give 

Av  R    —  P 

which  makes  the  covariant  dimensions  on  both  sides  consistent. 

The  equation  (24'1)  may  be  written  symbolically 
A  O)  =  C^IB^, 

and  the  conclusion  is  that  not  only  the  product  but  also  the  (symbolic) 
quotient  of  two  tensors  is  a  tensor.  Of  course,  the  operation  here  indicated 
is  not  that  of  ordinary  division. 

This  quotient  law  is  a  useful  aid  in  detecting  the  tensor- character  of 

expressions.  It  is  not  claimed  that  the  general  argument  here  given  amounts 
to  a  strict  mathematical  proof.  In  most  cases  we  can  supply  the  proof  re- 

quired by  one  or  more  applications  of  the  following  rigorous  theorem — 
A  quantity  which  on  inner  multiplication  by  any  covariant  (alternatively, 

by  any  contravariant)  vector  always  gives  a  tensor,  is  itself  a  tensor. 

For  suppose  that  A  (/mv)  Bv 

is  always  a  covariant  vector  for  any  choice  of  the  contravariant  vector  Bv. 
Then  by  (2312) 

{A\pv)B')=^{A(*P)B*)   (24-2). 

But  by  (23*11)  applied  to  the  reverse  transformation  from  accented  to  un- 
accented coordinates 

dxv' 

Hence
,  

subst
ituti

ng  

for  B&  in  (24*2)
, 

Since  B'v  is  arbitrary  the  quantity  in  the  bracket  must  vanish.    This  shows 
that  A  (fiv)  is  a  covariant  tensor  obeying  the  transformation  law  (23"22). 

We  shall  cite  this  theorem  as  the  "  rigorous  quotient  theorem." 
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25.    The  fundamental  tensors. 

It  is  convenient  to  write  (22*1)  as 
ds-  =  ghV  (dxY  (dx)v 

in  order  to  show  explicitly  the  contra  variant  character  of  dx^  =  (dx)*.  Since 

ds2  is  independent  of  the  coordinate-system  it  is  an  invariant  or  tensor 
of  zero  rank.  The  equation  shows  that  g^  (dxY  multiplied  by  an  arbitrarily 

chosen  contra  variant  vector  {dx)v  always  gives  a  tensor  of  zero  rank;  hence 
(/rvidxY  is  a  vector.  Again,  we  see  that  g^  multiplied  by  an  arbitrary  con- 

tra variant  vector  (dxy  always  gives  a  vector;  hence  g^v  is  a  tensor.  This 
double  application  of  the  rigorous  quotient  theorem  shows  that  g^v  is  a 

tensor;  and  it  is  evidently  covariant  as  the  notation  has  anticipated. 
Let  g  stand  for  the  determinant 

9n 

<hl 

9n 9u 9n #22 

9» #24 

9n 9& 933 
934 9n 

9** 
9*3 

9u 

.(25-1). 

Let  g**v  be  defined  as  the  minor  of  g^v  in  this  determinant,  divided  by  g*. 

Consider  the  inner  product  gu.agv:r.  We  see  that  ll  and  v  select  two  rows 
in  the  determinant;  we  have  to  take  each  element  in  turn  from  the  /z  row, 

multiply  by  the  minor  of  the  corresponding  element  of  the  v  row,  add 

together,  and  divide  the  result  by  g.  This  is  equivalent  to  substituting  the 
fi  row  for  the  v  row  and  dividing  the  resulting  determinant  by  g.  If  ll  is  not 
the  same  as  v  this  gives  a  determinant  with  two  rows  identical,  and  the 

result  is  0.  If  /x  is  the  same  as  v  we  reproduce  the  determinant  g  divided  by 
itself,  and  the  result  is  1.    We  write 

gV     _    g  (.V<T 

=  0         iifi^v 

=  1         if  ll  =  v 

Thus  g"  has  the  same  property  of  a  substitution-operator^that  we  found 

for  ̂ <  in  (92-4).    For  examplef, oxa  axv 

^^  =  ̂ "  +  0  +  0  +  0       (25-2). 
Note  that  gvv  has  not  the  same  meaning  as  gv  with  /x  =  v,  because  a 

summation  is  implied.    Evidently 

#=1  +  1  +  1  +1  =  4   (25  3). 

The  equation  (25'2)  shows  that  g"  multiplied  by  any  contravariant  vector 
always  gives  a  vector.  Hence  gv  is  a  tensor.  It  is  a  very  exceptional  tensor 
since  its  components  are  the  same  in  all  coordinate-systems. 

*  The  notation  anticipates  the  result  proved  later  that  g*v  is  a  contravariant  tensor. 

t  Note  that  gv  will  act  as  a  substitution-operator  on  any  expression  and  is  not  restricted  to 

operating  on  tensors. 
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Again  since  g^g™  is  a  tensor  we  can  infer  that  gV!T  is  a  tensor.  This  is 
proved  rigorously  by  remarking  that  g^A*  is  a  covariant  vector,  arbitrary 
on  account  of  the  free  choice  of  A*.    Multiplying  this  vector  by  gv<T  we  have 

so  that  the  product  is  always  a  vector.    Hence  the  rigorous  quotient  theorem 

applies. 
The  tensor  character  of  g*v  may  also  be  demonstrated  by  a  method  which 

shows  more  clearly  the  reason  for  its  definition  as  the  minor  of  $rM„  divided  by 

g.    Since  g^v  Av  is  a  covariant  vector,  we  can  denote  it  by  2?M.    Thus 

guAl+gliA'z+gnAi+gliAi^Bl;  etc. 

Solving  these  four  linear  equations  for  A1,  A2,  A3,  A*  by  the  usual  method  of 
determinants,  the  result  is 

J.1  =  g"Bx  +  g^B,  +  g™B3  +  g"B4 ;  etc., 

so  that  A^  =  g^Bv. 

Whence  by  the  rigorous  quotient  theorem  g*v  is  a  tensor. 
We  have  thus  denned  three  fundamental  tensors 

9*»>  9l>   9^ 
of  covariant,  mixed,  and  contra  variant  characters  respectively. 

26.   Associated  tensors. 

We  now  define  the  operation  of  raising  or  lowering  a  suffix.  Raising  the 
suffix  of  a  vector  is  defined  by  the  equation 

A*  =  g*vAv, 

and  lowering  by  the  equation 

A^g^A". 
For  a  more  general  tensor  such  as  Ay^  ,  the  operation  of  raising  /j,  is  defined 
in  the  same  w\y,  viz. 

<  =  /"<       (261), 
and  for  lowering 

K.=9^       (26-2). 
These  definitions  are  consistent,  since  if  we  raise  a  suffix  and  then  lower 

it  we  reproduce  the  original  tensor.  Thus  if  in  (261)  we  multiply  by  g^  in 
order  to  lower  the  suffix  on  the  left,  we  have 

g    AyS;  =  g    fA* 

=  av AyS =  K,  by  (25-2), 
which  is  the  rule  expressed  by  (26-2). 
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It  will  be  noticed  that  the  raising  of  a  suffix  v  by  means  of  g*v  is  accom- 
panied by  the  substitution  of  fx  for  v.  The  whole  operation  is  closely  akin  to 

the  plain  substitution  of  ll  for  v  by  means  of  g".    Thus 

multiplication  by  g*"  gives  substitution  with  raising, 
multiplication  by  gv  gives  plain  substitution, 
multiplication  by  #M„  gives  substitution  with  lowering. 

In  the  case  of  non-symmetrical  tensors  it  may  be  necessary  to  distinguish 
the  place  from  which  the  raised  suffix  has  been  brought,  e.g.  to  distinguish 

between  A*  and  AvyL. 
It  is  easily  seen  that  this  rule  of  association  between  tensors  with  suffixes 

in  different  positions  is  fulfilled  in  the  case  of  g*",  g"^,  g^;  in  fact  the  defini- 

tion off/"  in  (25-l)  is  a  special  case  of  (26T). 
For  rectangular  coordinates  the  raising  or  lowering  of  a  suffix  leaves  the 

components  unaltered  in  three-dimensional  space*;  and  it  merely  reverses 
the  signs  of  some  of  the  components  for  Galilean  coordinates  in  four- 

dimensional  space-time.  Since  the  elementary  definitions  of  physical 
quantities  refer  to  rectangular  axes  and  time,  we  can  generally  use  any  one 

of  the  associated  tensors  to  represent  a  physical  entity  without  infringing 

pre-relativity  definitions.  This  leads  to  a  somewhat  enlarged  view  of  a  tensor 
as  having  in  itself  no  particular  covariant  or  contravariant  character,  but 

having  components  of  various  degrees  of  covariance  or  contravariance  repre- 
sented by  the  whole  system  of  associated  tensors.  That  is  to  say,  the  raising 

or  lowering  of  suffixes  will  not  be  regarded  as  altering  the  individuality  of 

the  tensor;  and  reference  to  a  tensor  A^v  may  (if  the  context  permits)  be 

taken  to  include  the  associated  tensors  A"  and  A1*". 

It  is  useful  to  notice  that  dummy  suffixes  have  a  certain  freedom  of  move- 

ment between  the  tensor-factors  of  an  expression.   Thus 

AaPB^  =  A^Bafi,   A.aB™  =  AsB\..   (26-3). 
The  suffix  may  be  raised  in  one  term  provided  it  is  lowered  in  the  other. 

The  proof  follows  easily  from  (26*1)  and  (262). 
In  the  elementary  vector  theory  two  vectors  are  said  to  be  perpendicular 

if  their  scalar-product  vanishes;  and  the  square  of  the  length  of  the  vector  is 

its  scalar-product  into  itself.  Corresponding  definitions  are  adopted  in  the 
tensor  calculus. 

The  vectors  A^  and  2?M  are  said  to  be  perpendicular  if 

AtkB*  =  0     (264). 

If  I  is  the  length  of  A^  (or  A») 

l\=A^     (26-5). 
A  vector  is  self-perpendicular  if  its  length  vanishes. 

*  If  ds-  =  dxi2  +  dx22  +  dx:f,  0M „=/•"  =  £/"  so  that  all  three  tensors  are  merely  substitution- 
operators. 
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The  interval  is  the  length  of  the  corresponding  displacement  dx^  because 

ds2  =  g^  (doc)'" .  (dx)v 

=  (dx\  (dx)v 

by  (26*2).    A  displacement  is  thus  self-perpendicular   when   it  is  along  a 
light- track,  ds=  0. 

If  a  vector  A^  receives  an  infinitesimal  increment  dA^  perpendicular  to 

itself,  its  length  is  unaltered  to  the  first  order;  for  by  (26'5) 

{I  +  dlf  =  (A,.  +  dAJ  (A"  +  dA") 

=  A^A*  +  A^dA^  +  A„.dA*     to  the  first  order 

=  P  +  2AfldA»     by  (26'3), 

and  A(ldA*  =  0  by  the  condition  of  perpendicularity  (26"4). 
In  the  elementary  vector  theory,  the  scalar-product  of  two  vectors  is 

equal  to  the  product  of  their  lengths  multiplied  by  the  cosine  of  the  angle 

between  them.    Accordingly  in  the  general  theory  the  angle  6  between  two 
vectors  A^  and  B^  is  defined  by 

A  B* 
cosfl  =  -— ^*    (26-6). 

Clearly  the  angle  so  defined  is  an  invariant,  and  agrees  with  the  usual 

definition  when  the  coordinates  are  rectangular.  In  determining  the  angle 
between  two  intersecting  lines  it  makes  no  difference  whether  the  world  is 

curved  or  flat,  since  only  the  initial  directions  are  concerned  and  these  in  any 

case  lie  in  the  tangent  plane.  The  angle  0  (if  it  is  real)  has  thus  the  usual 

geometrical  meaning  even  in  non-Euclidean  space.  It  must  not,  however,  be 
inferred  that  ordinary  angles  are  invariant  for  the  Lorentz  transformation; 

naturally  an  angle  in  three  dimensions  is  invariant  only  for  transformations 

in  three  dimensions,  and  the  angle  which  is  invariant  for  Lorentz  transforma- 

tions is  a  four-dimensional  angle. 
From  a  tensor  of  even  rank  we  can  construct  an  invariant  by  bringing 

half  the  suffixes  to  the  upper  and  half  to  the  lower  position  and  contracting. 

Thus  from  A^vaT  we  form  A™  and  contract,  obtaining  A  =  A%.  This  in- 
variant will  be  called  the  spar*.  Another  invariant  is  the  square  of  the 

length   AllyaTAfU,!TT.     There    may  also    be    intermediate    invariants   such    as 

27.    Christoffel's  3-index  symbols. 

We  introduce  two  expressions  (not  tensors)  of  great  importance  throughout 
our  subsequent  work,  namely 

dgva     dg^\ 

^-i-fc-^^-fe)    (27'2)- 
*  Originally  the  German  word  Spur. 
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We  have  {fiv,  a)  =  cf*K \pv>  X]      (27-3), 

[fiv,  <r]=g<rX{fiv,'k)      (27-4). 

The  result  (27*3)  is  obvious  from  the  definitions.    To  prove  (27-4),  multiply 
(27-3)  by  gaa;  then 

gaa  [fiv,  a]  =  gao.gaK  [fiv,  X] 

,  .  .    .  =  &">  "1 
which  is  equivalent  to  (27*4). 

Comparing  with  (26'1)   and  (26'2)  we  see  that   the   passage  from  the 

"square  "  to  the  "  curly"  symbol,  and  vice  versa,  is  the  same  process  as  raising 
and  lowering  a  suffix.    It  might  be  convenient  to  use  a  notation  in  which 
this  was  made  evident,  e.g. 

rM„i<r  =  [fiv,  o-],    r°v  =  [fiv,  a-}, 
but  we  shall  adhere  to  the  more  usual  notation. 

From  (271)  it  is  found  that 

[fiv,  <r]  +  [av,  ,i]  =  d^       (27-5). 
There  are  40  different  3-index  symbols  of  each  kind.  It  may  here  be 

explained  that  the  g^  are  components  of  a  generalised  potential,  and  the 

3-index  symbols  components  of  a  generalised  force  in  the  gravitational 
theory  (see  §55). 

28.    Equations  of  a  geodesic. 

We  shall  now  determine  the  equations  of  a  geodesic  or  path  between  two 

points  for  which 

'*  is  stationary. 

This  absolute  track  is  of  fundamental  importance  in  dynamics,  but  at  the 

moment  we  are  concerned  with  it  only  as  an  aid  in  the  development  of  the 

tensor  calculus*. 

Keeping  the  beginning  and  end  of  the  path  fixed,  we  give  every  inter- 
mediate point  an  arbitrary  infinitesimal  displacement  8x„  so  as  to  deform  the 

path.    Since 

Ceo            /Mv  t'*^14  wiX'i/j 

2ds 8  (ds)  =  dx,,.dxv  8g^v  +  g^dx^  8  (dxv)  +  gtlvdxv 8  (dx^) 

=  dx^dxy  -~^  8xa  +  g^dx^d  (8xv)  +  g^ydxvd  (8x^.)  . .  .(28'1). 

The  stationary  condition  is 

r8(ds)  =  0    (28-2), 

*  Our  ultimate  goal  is  equation  (29 -3).   An  alternative  proof  (which  does  not  introduce  the 
calculus  of  variations)  is  given  in  §  31. 
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which  becomes  by  (28'1) 

or,  changing  dummy  suffixes  in  the  last  two  terms, 

I  C(dx»dxvdg»v^ (      <K.,a    ̂ M^g    J,       Q 

Applying  the  usual  method  of  partial  integration,  and  rejecting  the  inte- 

grated part  since  8xa  vanishes  at  both  limits, 

1  f{dxIJ,dxvdg^,v      d  (      dx^  dxv\\  ~      7       A 

This  must  hold  for  all  values  of  the  arbitrary  displacements  8xa  at  all 

points,  hence  the  coefficient  in  the  integrand  must  vanish  at  all  points  on  the 

path.    Thus 

1  dxp  dxv  dg^      1  dg^  dx^      1  dgav  dx^  _  1        <Px^  _  1        drxv  _ 

2~ds~~ds~dxZ~2~dT^ds~~2~ds~~ds~      2giLa~d¥     29avds*~' 

dg^  _  dg^a  dx^  dgav  _  dgav  dx^ JN  ow  ^     —  .-,        7      anQ       ,     —  _        7 
as       oxv   as  as       ox^  as 

Also  in  the  last  two  terms  we  replace  the  dummy  suffixes  //.  and  v  by  e.    The 

equation  then  becomes 

1  ax^-dXf,  fcguv   ogiia     ogv<r\  a  xe    ^r-^^ 

2  ds   ds  \dxo-      dxv       dx^J  ds" 

We  can  get  rid  of  the  factor  ge<T  by  multiplying  through  by  g*0-  so  as  to 
form  the  substitution  operator  g*.    Thus 

I  dXp.  axv       fogiur  ,  dgva  ̂   ̂9j^\  ,  d  &'a  _  ̂   or-a,} 
y     l  a™    ~f  a™        a™   /  "*"  Jet  ~ v       ^"°    >> 2  ds  ds         \dx„       dx^       dx„J       ds 

or,  by  (27-2)  ^+f^„l^^  =  0      (28-5). as2  '  as  as 

For  a  =  1,  2,  3,  4  this  gives  the  four  equations  determining  a  geodesic. 

29.    Covariant  derivative  of  a  vector. 

The  derivative  of  an  invariant  is  a  covariant  vector  (§  19),  but  the 

derivative  of  a  vector  is  not  a  tensor.  We  proceed  to  find  certain  tensors 

which  are  used  in  this  calculus  in  place  of  the  ordinary  derivatives  of  vectors. 

Since  dx^  is  contra  variant  and  ds  invariant,  a  "  velocity "  dx^/ds  is  a 
contra  variant  vector.    Hence  if  A^  is  any  covariant  vector  the  inner  product 

dx 

A  M  —^  is  invariant. 

M  ds 

These  simple  formulae  are  noteworthy  as  illustrating  the  great  value  of  the  summation 
convention.  The  law  of  total  differentiation  for  four  coordinates  becomes  formally  the  same  as  for 
one  coordinate. 
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The  rate  of  change  of  this  expression  per  unit  interval  along  any  assigned 
curve  must  also  be  independent  of  the  coordinate-system,  i.e. 

d  (  .    d%u\  .    . 

Sl^rffjlsmvanant   <291)- 
This  assumes  that  we  keep  to  the  same  absolute  curve  however  the  coordinate- 

system  is  varied.  The  result  (29*1)  is  therefore  only  of  practical  use  if  it  is 
applied  to  a  curve  which  is  defined  independently  of  the  coordinate-system. 
We  shall  accordingly  apply  it  to  a  geodesic.    Performing  the  differentiation, 

■w-^  -r-  •  -7—  +  A^  -j-f  is  invariant  along  a  geodesic   (29"2). 

From  (28-5)  we  have  that  along  a  geodesic 

Hence  (29'2)  gives 
dx„dxv  fdAu        .    .  A  .    . 

-ds  lis  [W.  '  Aa  {^'  *])  1S  lnVanant The  result   is   now   general   since   the    curvature  (which    distinguishes    the 

geodesic)  has  been  eliminated  by  using  the  equations  (285)  and  only  the 

gradient  of  the  curve  (dx^/ds  and  dxv/ds)  has  been  left  in  the  expression. 

Since  dxjds  and  dxvjds  are  contravariant  vectors,  their  co-factor  is  a 
covariant  tensor  of  the  second  rank.    We  therefore  write 

A„  =  ̂-{pv,a}Aa,      (29-3), 

and  the  tensor  A^v  is  called  the  covariant  derivative  of  A^.. 

By  raising  a  suffix  we  obtain  two  associated  tensors  A**,,  and  A/  which 
must  be  distinguished  since  the  two  suffixes  are  not  symmetrical.  The  first 
of  these  is  the  most  important,  and  is  to  be  understood  when  the  tensor 

is  written  simply  as  A  „  without  distinction  of  original  position. 

Since  A„  =  g(reAe, 

we  have  by  (29'3) 

Aav  =  dx~v  ̂"A^  "  ̂  a>  (9«Ae) 

-*-^  +  *fe-I"*4*   b>'(27'4> 

Hence  multiplying  through  by  $*■",  and  remembering  that  g^ffa,  is  a 
substitution-operator,  we  have 

A\  =  —■  +  {ev,  fi]  A<    (29-4). 
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This  is  called  the  covariant  derivative  of  A*.    The  considerable  differences 

between  the  formulae  (29*3)  and  (29'4)  should  be  carefully  noted. 
The  tensors  A/  and  A*",  obtained  from  (29*3)  and  (29'4)  by  raising  the 

second  suffix,  are  called  the  contravariant  derivatives  of  A^  and  A".  We  shall 
not  have  much  occasion  to  refer  to  contravariant  derivatives. 

30.    Covariant  derivative  of  a  tensor. 

The  covariant  derivatives  of  tensors  of  the  second  rank  are  formed  as 

follows — 

A»;  =°^r+{oi<7,H]Aav+{oi<T,v}A^     (301), 

7)AV 

A%  =°^-
{H,<

T!a}
A:+{

aa,v
}A; 

 

 
 

(30-2)
, 

dA Ahva  =  j^-  {pa,  a}Aav-  {va,  a]  A^      (303). 

And   the  general   rule   for  covariant  differentiation   with   respect    to   x„  is 
illustrated  by  the  example 

■p. 

Ai^o-  =  ̂ -  AKllv  -  {\a,  a]  APailv  -  {fur,  a)  APXav  -  [va,  a]  ApK^a  +  {acr;  p]  Al^ 

  (30-4). 
The  above  formulae  are  primarily  definitions ;  but  we  have  to  prove  that 

the  quantities  on  the  right  are  actually  tensors.  This  is  done  by  an  obvious 

generalisation  of  the  method  of  the  preceding  section.    Thus  if  in  place  of 

(291)  we  use 
ct  I  ,     clx„  ctxv\  .    .  .  . 
-j-  (  An„  —j-  -y-  )  is  invariant  along  a  geodesic, 

we  obtain 

dxa-    ds    ds    ds  '*"  ds    ds2  M"  ds    ds2 

Then  substituting  for  the  second  derivatives  from  (28-5)   the   expression 
reduces  to 

A-,LVa  -j-  -y-  -j-  is  invariant, cts   as    cts 

showing  that  A^v<x  is  a  tensor. 

The  formulae  (301)  and  (30*2)  are  obtained  by  raising  the  suffixes  v  and 
/a,  the  details  of  the  work  being  the  same  as  in  deducing  (29"4)  from  (29'3). 

Consider  the  expression 

the  <r  denoting  covariant  differentiation.    By  (29'3)  this  is  equal  to 

(g£-W.«}A)c.  +  *(g-K,jft) 
=  ~  (B,C,)  -  [^,  «)  (B.C.)  -  \va,  «)  (B„C„). a 
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But  comparing  with  (30-3)  we  see  that  this  is  the  covariant  derivative  of  the 
tensor  of  the  second  rank  (B^C).    Hence 

(BM^B^C.  +  BrC.    (30-5). 
Thus  in  covariant  differentiation  of  a  product  the  distributive  rule  used  in 
ordinary  differentiation  holds  good. 

Applying  (303)  to  the  fundamental  tensor,  we  have 

dgHv      r  ,  . 
<7m,<t  =  dx    -  {(ht,  ct\  gav  -  \v<t,  a]  g„a 

=  dx    ~  ̂°"'  ̂   ~  $"*'  ̂  
=  0     by  (27-5). 

Hence  the  covariant  derivatives  of  the  fundamental  tensors  vanish  identi- 

cally, and  the  fundamental  tensors  can  be  treated  as  constants  in  covariant 
differentiation.  It  is  thus  immaterial  whether  a  suffix  is  raised  before  or  after 

the  differentiation,  as  our  definitions  have  already  postulated. 
If  I  is  an  invariant,  I  Ay.  is  a  covariant  vector;  hence  its  covariant 

derivative  is 

{I AX  =  ̂ -  (I  Ay)  -  {jjlv,  oc]  IAa 

A       dI         TA =  Ay  —  +  lAyV. 

But  by  the  rule  for  differentiating  a  product  (30"5) 

{IAlt)v  =  IvAy  +  IAyV, 

t       31 
so  tha

t  
i„  =  ̂ —  . 

6xv 

Hence  the  covariant  derivative  of  an  invariant  is  the  same  as  its  ordinary 
derivative. 

It  is,  of  course,  impossible  to  reserve  the  notation  AyV  exclusively  for  the 

covariant  derivative  of  Ay,  and  the  concluding  suffix  does  not  denote  differen- 
tiation unless  expressly  stated.  In  case  of  doubt  we  may  indicate  the  covariant 

and  contra  variant  derivatives  by  (AX  and  (Ay)v. 
The  utility  of  the  covariant  derivative  arises  largely  from  the  fact  that,  when 

the  g^  are  constants,  the  3-index  symbols  vanish  and  the  covariant  derivative 
reduces  to  the  ordinary  derivative.  Now  in  general  our  physical  equations 
have  been  stated  for  the  case  of  Galilean  coordinates  in  which  the  g^v  are 

constants  ;  and  we  may  in  Galilean  equations  replace  the  ordinary  derivative 

by  the  covariant  derivative  without  altering  anything.  This  is  a  necessary 

step  in  reducing  such  equations  to  the  general  tensor  form  which  holds  true 

for  all  coordinate-systems. 

As  an  illustration  suppose  we  wish  to  find  the  general  equation  of  pro- 
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pagation  of  a  potential  with  the  velocity  of  light.  In  Galilean  coordinates  the 

equation  is  of  the  well-known  form 

824>      920      d-<f>      &$_  . 

^^Wd^'W2"^'    (     }' 
The  Galilean  values  of  g*v  are  gu=  1,  gu  =  g22  =  g3i  =  - 1,  and  the  other 

components  vanish.    Hence  (30*6)  can  be  written 

v-iLr0   (30'65)- 
The  potential  <£  being  an  invariant,  its  ordinary  derivative  is  a  covariant 

vector  (f}H.  =  d<j)/da'lj.;  and  since  the  coordinates  are  Galilean  we  may  insert 
the  covariant  derivative  ̂ v  instead  of  9<^/d#„ .    Hence  the  equation  becomes 

^T</V  =  0    (30-7). 
Up  to  this  point  Galilean  coordinates  are  essential;  but  now,  by  examining  the 

covariant  dimensions  of  (30*7),  we  notice  that  the  left-hand  side  is  an  invariant, 
and  therefore  its  value  is  unchanged  by  any  transformation  of  coordinates. 

Hence  (307)  holds  for  all  coordinate-systems,  if  it  holds  for  any.  Using  (29'3) 
we  can  write  it  more  fully 

Hs3sr<""i£)-0   (30'8)- 
This  formula  may  be  used  for  transforming  Laplace's  equation  into  curvilinear 
coordinates,  etc. 

It  must  be  remembered  that  a  transformation  of  coordinates  does  not  alter 

the  kind  of  space.  Thus  if  we  know  by  experiment  that  a  potential  <£  is 

propagated  according  to  the  law  (30'6)  in  Galilean  coordinates,  it  follows 

rigorously  that  it  is  propagated  according  to  the  law  (30"8)  in  any  system  of 
coordinates  in  flat  space-time ;  but  it  does  not  follow  rigorously  that  it  will 

be  propagated  according  to  (30"8)  when  an  irreducible  gravitational  field  is 
present  which  alters  the  kind  of  space-time.  It  is,  however,  a  plausible 

suggestion  that  (30*8)  may  be  the  general  law  of  propagation  of  <£  in  any  kind 
of  space-time;  that  is  the  suggestion  which  the  principle  of  equivalence  makes. 
Like  all  generalisations  which  are  only  tested  experimentally  in  a  particular 
case,  it  must  be  received  with  caution. 

The  operator  □  will  frequently  be  referred  to.  In  general  coordinates  it 

is  to  be  taken  as  defined  by 

D^...=^(^...)«^   (30-9). 
Or  we  may  write  it  in  the  form 

i.e.  we  perform  a  covariant  and  contravariant  differentiation  and  contract 
them. 
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Summary  of  Rules  for  Covariant  Differentiation. 

1.  To  obtain  the  covariant  derivative  of  any  tensor  Ay  with  respect  to 
xa,  we  take  first  the  ordinary  derivative 

dxa     " " " ' ' 
and  for  each  covarian

t  
suffix  A\\l\,  we  add  a  terra 

-{ficr,a}  J.;;;;; 

and  for  each  contra  variant  suffix  A\\*\,  we  add  a  term 

+  {cLa,fx}Ay*[. 
2.  The  covariant  derivative  of  a  product  is  formed  by  covariant  differen- 

tiation of  each  factor  in  turn,  by  the  same  rule  as  in  ordinary  differentiation. 

3.  The  fundamental  tensor  g^  or  g*v  behaves  as  though  it  were  a  constant 
in  covariant  differentiation. 

4.  The  covariant  derivative  of  an  invariant  is  its  ordinary  derivative. 

5.  In  taking  second,  third  or  higher  derivatives,  the  order  of  differentiation 

is  not  interchangeable*. 

31.    Alternative  discussion  of  the  covariant  derivative. 

By  (2322)  ^  =  _  _^a/, 
Hence  differentiating 

ty 'm"  _         j"    d2xa      deep  d*xa      dxp)       dxa  dxp    dxy  dgap-        /qi.ii\ 
dxK'  ̂ {dx^dxp  dxj      dx^dxv'  dx^\      dx^  dxj  dxK'  dxy 

Here  we  have  used 

3.<7a0     dgap  dxy 

dx>!       dxy  dxK" 
and  further  we  have  interchanged  the  dummy  suffixes  a  and  /3  in  the  second 
term  in  the  bracket.    Similarly 

ty'vK  f    &%<*     dxp  ,       92^a     dxp\       dxa  dxp  dx^  dg^y 

dx;  - 9aP  {dxjdxj  dxK'  +  dx/dx/  dxv'\  "*■  dx~'  dxj  dxK'  dxa'"  V 

dg'fiK_        \    d2xa     dxp         d2xa     dx0\      9a?«  dx?  dxy_  dgay       (qi.tq} 
IxJ  ~ 9aP  \dx~Jdx~;  cW  +  dxjdx^'  9VJ      t<  3*V'  dx>!   dx?'"  K 

Add  (31-12)  and  (31-13)  and  subtract  (31*11),  we  obtain  by  (271) 

r  -.,  O  Xa       OXff  OXa    OX p   OXy    r    0        -.  ,  .ii,.|, 

*  This  is  inserted  here  for  completeness ;  it  is  discussed  later. 
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OvC 

Multiply  through  by  g'k!>      e,,we  have  by  (27'3) 

.  ,,  dxe  d2xa         ,.    dxp  dxe  dxy  dxe    dxa  dxa  r    _     n 

^"'  p]ter  9""  z<teJ  ■ 8   8S7  a<  +  9   SI'  tee  ■  av  S; [a/S- 7] 

-    *%+£#{«£*)    (31-3), dx^dxj      dxj!.  dxj 

a  formula  which  determines  the  second  derivative  d^xjdx^dxj  in  terms  of  the 
first  derivatives. 

By  (23-12)  A;  =  ̂A,        (314). 
Hence  differentiating 

dx,j. 

dA^         d2x€       .        dxe    dxs  dA( 

dxj       dx^dXy      e     dxp  '  dxj  dx$ 

-  ( {         v  ̂1      ̂ l  —L  \  r     }\  A        ̂ -  — ^  ̂~ 
V  oxp      dx^  dx„'  l     '    V     e      3^v'  3#/  3*V» 

by  (31*3)  and  changing  the  dummy  suffixes  in  the  last  term. 

....(31-5) 

Also  by  (2312)  Ae^-,  =  A'. 

Hence  (31*5)  becomes 

3^.M'      r         w  .  ,      dxa  dxe  fdAa     ,         x      \  /oi.fiN 
__{A4,,p}^  =  __^_-{a/S,e}^j   (316), 

3^4 showing  that  -=— -  —  {/lav,  p}  J.p 

obeys  the  law  of  transformation  of  a  covariant  tensor.    We  thus  reach  the 

result  (29'3)  by  an  alternative  method. 
A  tensor  of  the  second  or  higher  rank  may  be  taken  instead  of  Ah  in  J 

(31'4),  and  its  covariant  derivative  will  be  found  by  the  same  method. 

32.    Surface-elements  and  Stokes's  theorem. 

Consider  the  outer  product  X1"4"  of  two  different  displacements  dx^  and  8xv.  ;; 

The  tensor  1fv  will  be  unsymmetrical  in  fi  and  v.  We  can  decompose  any  | 
such  tensor  into  the  sum  of  a  symmetrical  part  I"!-114"  +  ̂"'i)  anc^  an  anti-  S 

symmetrical  part  ̂   (S*1"  —  S"'*). 

Double*  the  antisymmetrical  part  of  the   product  dx^Sxp  is  called  the  lie 
surface-element  contained  by  the  two  displacements,  and  is  denoted  by  dS*". ; 
We  have  accordingly 

dS*"  =  dx^Sxy  -dxySxp   (321) 

I  Sxp    8xv 

*  The  doubling  of  the  natural  expression  is  avenged  by  the  appearance  of  the  factor  £  in  most  j 
formulae  containing  dS1*". 
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In  rectangular  coordinates  this  determinant  represents  the  area  of  the  pro- 

jection on  the  /xv  plane  of  the  parallelogram  contained  by  the  two  displace- 
ments; thus  the  components  of  the  tensor  are  the  projections  of  the 

parallelogram  on  the  six  coordinate  planes.  In  the  tensor  dS*"  these  are 
repeated  twice,  once  with  positive  and  once  with  negative  sign  (corresponding 

perhaps  to  the  two  sides  of  the  surface).  The  four  components  dSn,  dS22,  etc. 
vanish,  as  must  happen  in  every  antisymmetrical  tensor.  The  appropriateness 

of  the  name  "  surface-element "  is  evident  in  rectangular  coordinates ;  the 
geometrical  meaning  becomes  more  obscure  in  other  systems. 

The  surface-element  is  always  a  tensor  of  the  second  rank  whatever  the 
number  of  dimensions  of  space  ;  but  in  three  dimensions  there  is  an  alternative 

representation  of  a  surface  area  by  a  simple  vector  at  right  angles  to  the 
surface  and  of  length  proportional  to  the  area ;  indeed  it  is  customary  in  three 

dimensions  to  represent  any  antisymmetrical  tensor  by  an  adjoint  vector. 

Happily  in  four  dimensions  it  is  not  possible  to  introduce  this  source  of 
confusion. 

The  invariant  £  A^dS*" 
is  called  the  flux  of  the  tensor  A^  through  the  surface-element.  The  flux 
involves  only  the  antisymmetrical  part  of  A^,  since  the  inner  product  of  a 
symmetrical  and  an  antisymmetrical  tensor  evidently  vanishes. 

Some  of  the  chief  antisymmetrical  tensors  arise  from  the  operation  of 

curling.    If  K^  is  the  covariant  derivative  of  A"K,  we  find  from  (293)  that 

V-*.-§*-g   <32'2> 
since  the  3-index  symbols  cancel  out.  Since  the  left-hand  side  is  a  tensor,  the 

right-hand  side  is  also  a  tensor.  The  right-hand  side  will  be  recognised  as  the 

"  curl "  of  elementary  vector  theory,  except  that  we  have  apparently  reversed 
the  sign.  Strictly  speaking,  however,  we  should  note  that  the  curl  in  the 

elementary  three-dimensional  theory  is  a  vector,  whereas  our  curl  is  a  tensor ; 
and  comparison  of  the  sign  attributed  is  impossible. 

The  result  that  the  covariant  curl  is  the  same  as  the  ordinary  curl  does 

not  apply  to  contravariant  vectors  or  to  tensors  of  higher  rank : 

rr        rr      .  dK"     dK" 

d.i\.       dxp  ' In  tensor  notation  the  famous  theorem  of  Stokes  becomes 

^"iJJSf-g)*"   (3*3>- 
the  double  integral  being  taken  over  any  surface  bounded  by  the  path  of  the 

single  integral.  The  factor  £  is  needed  because  each  surface-element  occurs 

twice,  e.g.  as  dS12  and  —  o^S'-1.    The  theorem  can  be  proved  as  follows — 
Since  both  sides  of  the  equation  are  invariants  it  is  sufficient  to  prove  t In- 

equation for  anyone  system  of  coordinates.    Choose  coordinates  so  that  the 

:> — -j, 



68  SURFACE-ELEMENTS  AND  STOKES  S  THEOREM  CH.  II 

surface  is  on  one  of  the  fundamental  partitions  x3  =  const.,  a?4=  const.,  and  so 

that  the  contour  consists  of  four  parts  given  successively  by  x^  =  a,  x2  =  ft, 

x1  =  <y,  x2  =  B;  the  rest  of  the  mesh-system  may  be  filled  up  arbitrarily.    For 
an  elementary  mesh  the  containing  vectors  are  (dcc1}  0,  0,  0)  and  (0,  dx2,  0,  0), 
so  that  by  (321) 

dS12  =  dx1dx2=-dSn. 

Hence  the  right-hand  side  of  (32'3)  becomes 

(  — -~-^)dx1dx2 
JaJfi\OX2         oxxJ 

=  -  f[[Ktf  -  [Ktf]  dx1  +  f\[K2]y  -  [K2f]  dx2, 

which  consists  of  four  terms  giving  [K^dx^  for  the  four  parts  of  the  contour. 

This  proof  affords  a  good  illustration  of  the  methods  of  the  tensor  calculus. 
The  relation  to  be  established  is  between  two  quantities  which  (by  examination 

of  their  covariant  dimensions)  are  seen  to  be  invariants,  viz.  K^idxf-  and 

(K^  —  K^dS**-",  the  latter  having  been  simplified  by  (32-2).  Accordingly  it 
is  a  relation  which  does  not  depend  on  any  particular  choice  of  coordinates, 

although  in  (32*3)  it  is  expressed  as  it  would  appear  when  referred  to  a 
coordinate-system.  In  proving  the  relation  of  the  two  invariants  once  for  all, 
we  naturally  choose  for  the  occasion  coordinates  which  simplify  the  analysis  ; 
and  the  work  is  greatly  shortened  by  drawing  our  curved  meshes  so  that  four 

partition-lines  make  up  the  contour. 

33.    Significance  of  covariant  differentiation. 

Suppose  that  we  wish  to  discuss  from  the  physical  point  of  view  how  a 

field  of  force  varies  from  point  to  point.  If  polar  coordinates  are  being  used, 

a  change  of  the  r-component  does  not  necessarily  indicate  a  want  of  uniformity 
in  the  field  of  force  ;  it  is  at  least  partly  attributable  to  the  inclination  between 

the  r-directions  at  different  points.  Similarly  when  rotating  axes  are  used, 
the  rate  of  change  of  momentum  h  is  given  not  by  dhjdt,  etc.,  but  by 

dhi/dt  —  co3h2+  eo2h3,  etc   (33-l). 

The  momentum  may  be  constant  even  when  the  time-derivatives  of  its  com- 
ponents are  not  zero. 

We  must  recognise  then  that  the  change  of  a  physical  entity  is  usually 

regarded  as  something  distinct  from  the  change  of  the  mathematical  com- 
ponents into  which  we  resolve  it.  In  the  elementary  theory  a  definition  of  the 

former  change  is  obtained  by  identifying  it  with  the  change  of  the  components 

in  unaccelerated  rectangular  coordinates ;  but  this  is  of  no  avail  in  the  general 

case  because  space-time  may  be  of  a  kind  for  which  no  such  coordinates  exist. 
Can  we  still  preserve  this  notion  of  a  physical  rate  of  change  in  the  general 
case  ? 

Our  attention  is  directed  to  the  rate  of  change  of  a  physical  entity  because 

of  its  importance  in  the  laws  of  physics,  e.g.  force  is  the  time-rate  of  change 
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of  momentum,  or  the  space-rate  of  change  of  potential ;  therefore  the  rate  of 
change  should  be  expressed  by  a  tensor  of  some  kind  in  order  that  it  may  enter 

into  the  general  physical  laws.  Further  in  order  to  agree  with  the  customary 

definition  in  elementary  cases,  it  must  reduce  to  the  rate  of  change  of  the 

rectangular  components  when  the  coordinates  are  Galilean.  Both  conditions 

are  fulfilled  if  we  define  the  physical  rate  of  change  of  the  tensor  by  its  co- 
variant  derivative. 

The  covariant  derivative  A^  consists  of  the  term  dAu/dx„,  giving  the 

apparent  gradient,  from  which  is  subtracted  the  "spurious  change"  {pv,  a]  Aa 
attributable  to  the  curvilinearity  of  the  coordinate-system.  When  Cartesian 

coordinates  (rectangular  or  oblique)  are  used,  the  3-index  symbols  vanish  und 
there  is,  as  we  should  expect,  no  spurious  change.  For  the  present  we  shall 
call  Ay.v  the  rate  of  absolute  change  of  the  vector  A^. 

Consider  an  elementary  mesh  in  the  plane  of  xvx„,  the  corners  being  at 

A  (x„,  Xa),     B  (x„  +  dxv,  xa),     C{xv  +  dx„,  xa  +  dx„),     D  (x„,  x„  +  dx„). 

Let  us  calculate  the  whole  absolute  change  of  the  vector-field  A^  as  we  pass 
round  the  circuit  A  BCD  A. 

(1)  From  A  to  B,  the  absolute  change  is     All.vdxv,  calculated  for  x„*. 
(2)  From  B  to  G,  the  absolute  change  is     A^dx^,  calculated  for  xv  +  dxv. 

(3)  From  G  to  D,  the  absolute  change  is  —  A^vdxv,  calculated  for  xa  +  dxa. 

(4)  From  D  to  A,  the  absolute  change  is  —  A^dx,,,  calculated  for  x„. 

Combining  (2)  and  (4)  the  net  result  is  the  difference  of  the  changes  A^dx, 

at  xv  +  dxv  and  at  xv  respectively.   We  might  be  tempted  to  set  this  difference 
down  as 

7\     K-^u.^aXfj)  axv* 

ox„ 

But  as  already  explained  that  would  give  only  the  difference  of  the  mathe- 

matical components  and  not  the  "absolute  difference."  We  must  take  the 
covariant  derivative  instead,  obtaining  (since  dxa  is  the  same  for  (2)  and  (4)) 

Similarly  (3)  and  (1)  give 

so  that  the  total  absolute  change  round  the  circuit  is 

(Apa,  —  A^o)  dxvdxa    (33*2). 

We  should  naturally  expect  that  on  returning  to  our  starting  point  the 

absolute  change  would  vanish.   How  could  there  have  been  any  absolute  changi 

on  balance,  seeing  that  the  vector  is  now  the  same  A^  that  we  started  with  ? 

Nevertheless  in  general  A^,,^  A^av,  that  is  to  say  the  order  of  covariant 

differentiation  is  not  permutable,  and  (33  2)  does  not  vanish. 

*  We  suspend  the  summation  convention  since  dxv  and  dxa  are  edges  of  a  particular  mesh. 
The  convention  would  give  correct  results  ;  but  it  goes  too  fast,  and  we  cannot  keep  pace  with  it. 
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That  this  result  is  not  unreasonable  may  be  seen  by  considering  a  two- 

dimensional  space,  the  surface  of  the  ocean.  If  a  ship's  head  is  kept  straight 
on  the  line  of  its  wake,  the  course  is  a  great  circle.  Now  suppose  that  the  ship 

sails  round  a  circuit  so  that  the  final  position  and  course  are  the  same  as  at 

the  start.  If  account  is  kept  of  all  the  successive  changes  of  course,  and  the 

angles  are  added  up,  these  will  not  give  a  change  zero  (or  lir)  on  balance.  For 

a  triangular  course  the  difference  is  the  well-known  "spherical  excess."  Simi- 
larly the  changes  of  velocity  do  not  cancel  out  on  balance.  Here  we  have  an 

illustration  that  the  absolute  changes  of  a  vector  do  not  cancel  out  on  bringing 

it  back  to  its  initial  position. 

If  the  present  result  sounds  self-contradictory,  the  fault  lies  with  the  name 

"  absolute  change  "  which  we  have  tentatively  applied  to  the  thing  under  dis- 
cussion. The  name  is  illuminating  in  some  respects,  because  it  shows  the 

continuity  of  covariant  differentiation  with  the  conceptions  of  elementary 

physics.  For  instance,  no  one  would  hesitate  to  call  (33-l)  the  absolute  rate 
of  change  of  momentum  in  contrast  to  the  apparent  rate  of  change  dhjdt.  But 

having  shown  the  continuity,  we  find  it  better  to  avoid  the  term  in  the  more 

general  case  of  non -Euclidean  space. 

Following  Levi-Civita  and  Weyl  we  use  the  term  parallel  displacement  for 

what  we  have  hitherto  called  displacement  without  "absolute  change."  The 
condition  for  parallel  displacement  is  that  the  covariant  derivative  vanishes. 

We  have  hitherto  considered  the  absolute  change  necessary  in  order  that 

the  vector  may  return  to  its  original  value,  and  so  be  a  single-valued  function 
of  position.  If  we  do  not  permit  any  change  en  route,  i.e.  if  we  move  the  vector 

by  parallel  displacement,  the  same  quantity  will  appear  (with  reversed  sign) 

as  a  discrepancy  8  A  M  between  the  final  and  initial  vectors.  Since  these  are  at 
the  same  point  the  difference  of  the  initial  and  final  vectors  can  be  measured 

immediately.    We  have  then  by  (33*2) 

which  may  also  be  written 

BAli  =  ̂ jJ(A^v-Alurv)d8*'      (333), 
where  the  summation  convention  is  now  restored.  We  have  only  proved  this 

for  an  infinitesimal  circuit  occupying  a  coordinate-mesh,  for  which  dS""  has 
only  two  non-vanishing  components  dxvdxa  and  —  dxvdxa.  But  the  equation 
is  seen  to  be  a  tensor-equation,  and  therefore  holds  independently  of  the 

coordinate-system;  thus  it  applies  to  circuits  of  any  shape,  since  we  can  always 

choose  coordinates  for  which  the  circuit  becomes  a  coordinate-mesh.  But  (33-3) 
is  still  restricted  to  infinitesimal  circuits  and  there  is  no  way  of  extending  it 

to  finite  circuits — unlike  Stokes's  theorem.  The  reason  for  this  restriction  is  as 
follows — 

An  isolated  vector  An  may  be  taken  at  the  starting  point  and  carried  by 

parallel  displacement  round  the  circuit,  leading  to  a  determinate  value  of  8A^. 
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In  (33*3)  this  is  expressed  in  terms  of  derivatives  of  a  vector-field  A^  extending 
throughout  the  region  of  integration.  For  a  large  circuit  this  would  involve 

values  of  A,,,  remote  from  the  initial  vector,  which  are  obviously  irrelevant  to 
the  calculation  of  8A^.  It  is  rather  remarkable  that  there  should  exist  such 

a  formula  even  for  an  infinitesimal  circuit ;  the  fact  is  that  although  A^.va  —  A^av 

at  a  point  formally  refers  to  a  vector-field,  its  value  turns  out  to  depend  solely 

on  the  isolated  vector  A,,,  (see  equation  (34-3)). 
The  contravariant  vector  dxjds  gives  a  direction  in  the  four-dimensional 

world  which  is  interpreted  as  a  velocity  from  the  ordinary  point  of  view  which 

separates  space  and  time.  We  shall  usually  call  it  a  "velocity" ;  its  connection 
with  the  usual  three-dimensional  vector  (u,  v,  w)  is  given  by 

~ds~@(u'  V'  W'  ̂' 

where  ft  is  the  FitzGerald  factor  dt/ds.    The  length  (26"5)  of  a  velocity  is 
always  unity. 

If  we  transfer  dx^/ds  continually  along  itself  by  parallel  displacement  we 

obtain  a  geodesic.    For  by  (29'4)  the  condition  for  parallel  displacement  is 
9  fdXfA      .         .  dxa  _ 

dxv  \ds  )      '     ' ^'  ds 
Hence  multiplying  by  dxv/ds 

Oj  Xu        ,  -,  ClXa  dXv        _  /oo./i\ 

-&+*"•  *-es;-*   (334)' 
which  is  the  condition  for  a  geodesic  (285).  Thus  in  the  language  used  at 

the  beginning  of  this  section,  a  geodesic  is  a  line  in  four  dimensions  whose 
direction  undergoes  no  absolute  change. 

34.   The  Riemann-Christoffel  tensor. 

The  second  covariant  derivative  of  A^  is  found  by  inserting  in  (303)  the 

value  of  A^v  from  (29-3).    This  gives 

d2Au       .         ,  dAa      .         ,  dAa      ,         ,  dAn      ,         ,  .         ,    . 

-  a&- 1""'  a]wr  ̂  a]  w,  -  ("• a)  as: + (""'  "<  <"«• e)  A- 
+  {fi<r,  a]  [av,  e}  At  -  Aa  ̂ -  {pv,  a]      (341). 

The  first  five  terms  are  unaltered  when  v  and  <r  are  interchanged.  The  last 

two  terms  may  be  written,  by  changing  the  dummy  suffix  a  to  e  in  the  last 
term, 

At({fi*,a.}  {cLv,e)-^{pv,  e)J. 



72  THE  RIEMANN-CHRISTOFFEL  TENSOR  CH.  II 

Hence 

A^  -  A^v  =  Ae  (jfxcr,  a}  \av,  e}  -  ̂ -  [fiv,  e}  -  {fiv,  a}  {oca,  e)  +  ̂   {/ur, 

d 

.(34-2)
' 

The  rigorous  quotient  theorem  shows  that  the  co-factor  of  Ae  must  be  a  tensor. 
Accordingly  we  write 

A^-A^^A.B^      (34-3), where 
7)  7) 

B%a  =  [fia,  a]  {av,  e]  -  {fiv,  a]  {eta,  e]  +  ̂   [ficr,  e]  -  a~  {fiv,  e]  ...(34"4). 
This  is  called  the  Riemann-Christoffel  tensor.    It  is  only  when  this  tensor 
vanishes  that  the  order  of  covariant  differentiation  is  permutable. 

The  suffix  e  may  be  lowered.    Thus 

7)  7) 

=    [/w. «)  [«".  p]  - !/"'. a)  [a<7>  p]  +  gj"  [y-17'  pi  -  jgr  [/">.  pi 

-(/.»,  «]|£    +W«)^   (3«5). 
where  e  has  been  replaced  by  a  in  the  last  two  terms, 

=  -  {fitr,  a]  [pv,  a]  +  {fiv,  a]  [pa,  a] 

{  i  /  &gp°    ,    d23W       &g^        d2gpv  \    ^.^ 
2  \dXf,.dccv      "bxfi7)xa     dxpdxv     dx^dx,,/ 

by  (27-5)  and  (27-1). 
It  will  be  seen  from  (34*5)  that  B^^p,  besides  being  antisymmetrical  in  v 

and  a,  is  also  antisymmetrical  in  fi  and  p.  Also  it  is  symmetrical  for  the  double 

interchange  fi  and  v,  p  and  a.    It  has  the  further  cyclic  property 

5Mwp+5M„p„  +  5(tpwr=0      (34-6), 
as  is  easily  verified  from  (34,5). 

The  general  tensor  of  the  fourth  rank  has  256  different  components.  Here 

the  double  antisymmetry  reduces  the  number  (apart  from  differences  of  sign) 
to  6  x  6.  30  of  these  are  paired  because  fi,  p  can  be  interchanged  with  v,  a ; 

but  the  remaining  6  components,  in  which  /x,  p  is  the  same  pair  of  numbers  as 

v,  a,  are  without  partners.  This  leaves  21  different  components,  between 

which  (34-6)  gives  only  one  further  relation.  We  conclude  that  the  Riemann- 

Christoffel  tensor  has  20  independent  components*. 
The  Riemann-Christoffel  tensor  is  derived  solely  from  the  <7M„  and  there- 
fore belongs  to  the  class  of  fundamental  tensors.  Usually  we  can  form  from 

any  tensor  a  series  of  tensors  of  continually  increasing  rank  by  covariant 

*  Writing  the  suffixes  in  the  order  fxpav  the  following  scheme  gives  21  different  components  : 
1212  1223     1313     1321     1423     2323     2424 
1213  1224     1314     1334     1424     2324     2434 
1214  1234     1323     1414     1434     2334     3434 

with  the  relation  1234  -  1324  + 1423  =  0. 

If  we  omit  those  containing  the  suffix  4,  we  are  left  with  6  components  in  three-dimensional 
space.   In  two  dimensions  there  is  only  the  one  component  1212. 



34  THE  RIEMANN-CHRISTOFFEL  TENSOR  73 

differentiation.  But  this  process  is  frustrated  in  the  case  of  the  fundamental 

tensors  because  g^va  vanishes  identically.  We  have  got  round  the  gap  and 
reached  a  fundamental  tensor  of  the  fourth  rank.  The  series  can  now  be  con- 

tinued indefinitely  by  covariant  differentiation. 

When  the  Kiemann-Christoffel  tensor  vanishes,  the  differential  equations 

dA 

Am=  dJ*-  {fiv,  a]Aa  =  0    (34-7) 

are  integrable.    For  the  integration  will  be  possible  if  (34'7)  makes  dA^  or 

a  complete  differential,  i.e.  if 

{[iv,  a]  Aadxv 
is  a  complete  differential.    By  the  usual  theory  the  condition  for  this  is 

a    (  3   i         i        9   f         A  .  <         i  dJ.0     i  i  dAa     n 

A°  [fa  ̂">  ">  ~  R,  b">  "' J  +  ̂  ̂ fa~  ̂   ">  fa  =  °- 
Substituting  for  dAajdxa,  dAa/dxv  from  (34*7) 

Aa  L—  {fiv,  a]  -  ̂   {/xcr,  a] )  +  ({fiv,  a}  [cur,  e]  -  {fia,  a}  [av,  e})  Ae  =  0. 

Changing  the  suffix  a  to  e  in  the  first  term,  the  condition  becomes 

AeBtl(J.v  =  0. 
Accordingly  when  B^  vanishes,  the  differential  dA^  determined  by  (34*7) 
will  be  a  complete  differential,  and 

< 

between  any  two  points  will  be  independent  of  the  path  of  integration.  We 

can  then  carry  the  vector  Ay.  by  parallel  displacement  to  any  point  obtaining 

a  unique  result  independent  of  the  route  of  transfer.  If  a  vector  is  displaced 

in  this  way  all  over  the  field,  we  obtain  a  uniform  vector-field. 
This  construction  of  a  uniform  vector-field  is  only  possible  when  the 

Riemann-Christoffel  tensor  vanishes  throughout.  In  other  cases  the  equations 
have  no  complete  integral,  and  can  only  be  integrated  along  a  particular  route. 

E.g.,  we  can  prescribe  a  uniform  direction  at  all  points  of  a  plane,  but  their  is 
nothing  analogous  to  a  uniform  direction  over  the  surface  of  a  sphere. 

Formulae  analogous  to  (34-3)  can  be  obtained  for  the  second  derivatives 
of  a  tensor  A...^..  instead  of  for  a  vector  A^.   The  result  is  easily  found  to  be 

A...ti..„-A...r.„  =  2BlI„A....   (34-8), 
the  summation  being  taken  over  all  the  suffixes  /x  of  the  original  tensor. 

The  corresponding  formulae  for  contravariant  tensors  follow  at  once,  since 

the  g*¥  behave  as  constants  in  covariant  differentiation,  and  suffixes  may  be 

raised  on  both  sides  of  (34'8). 
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35.    Miscellaneous  formulae. 

The  following  are  needed  for  subsequent  use — 

Since  9^9^  =  °  or  1> 

g*adgllv  +  gHLVdg»a  =  0. 

Hence  gT  gv*  d9hLV  =  -  g„g*  dg<"  =  -  g^dg^ 
=  -dgaf*      (35-11). 

Similarly  dg^  =  -g^gv^dgiLV   (35'12). 

Multiplying  by  Aa?,  we  have  by  the  rule  for  lowering  suffixes 

A^dgaP  =  -  (g^g^A*?)  dg»» 

=  -A,,vdg^  =  -A^d^      (35-2). 

For  any  tensor  Bap  other  than   the  fundamental  tensor  the  corresponding 
formula  would  be 

A^dBap  =  Aa^dB^ 

by  (26-3).  The  exception  for  Bap=gali  arises  because  a  change  dgafi  has  an 
additional  indirect  effect  through  altering  the  operation  of  raising  and  lowering 
suffixes. 

Again  dg  is  formed  by  taking  the  differential  of  each  g^  and  multiplying 

by  its  co-factor  g  .g^"  in  the  determinant.    Thus 

d%  =  gi"dg.v  =  -g,vdg^     (35-3). 9 

The  contracted  3-index  symbol 

_  xn^d9^ 

~29     
dx/ 

The  other  two  terms  cancel  by  interchange  of  the  dummy  suffixes  a  and  X. 

Hence  by  (35-3) 

f  ,       1    dg 

^  a]  =  Tg  ̂  

=  ̂rlogV=7    (35-4). 

We  use  V '-  g  because  g  is  always  negative  for  real  coordinates. 
A  possible  pitfall  in  differentiating  a  summed  expression  should  be  noticed. 

The  result  of  differentiating  a^vx^xv  with  respect  to  xv  is  not  o^x^  but 

{aij.v  +  <i>vii)xit-'  The  method  of  performing  such  differentiations  may  be  illus- 
trated by  the  following  example.    Let 

where  att„  represents  constant  coefficients.    Then 

dh^  _  /dx,,.  dx„-     \ 
oxa  \dxa  oxa      J 

=  va-(s'X+5'X)    by(223)- 
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Repeating  the  process, 

^ra^A9:9;+9:9;) 
Hence  changing  dummy  suffixes 

d2 

Similarly  if  aIW9  is  symmetrical  in  its  suffixes 

d3 

The  pitfall  arises  from  repeating  a  suffix  three  times  in  one  term.  In  these 

formulae  the  summation  applies  to  the  repetition  within  the  bracket,  and  not 
to  the  differentiation. 

Summary. 

Tensors  are  quantities  obeying  certain  transformation  laws.  Their  im- 
portance lies  in  the  fact  that  if  a  tensor  equation  is  found  to  hold  for  one 

system  of  coordinates,  it  continues  to  hold  when  any  transformation  of 

coordinates  is  made.  New  tensors  are  recognised  either  by  investigating 
their  transformation  laws  directly  or  by  the  property  that  the  sum,  difference, 

product  or  quotient  of  tensors  is  a  tensor.  This  is  a  generalisation  of  the 

method  of  dimensions  in  physics. 

The  principal  operations  of  the  tensor  calculus  are  addition,  multiplication 

(outer  and  inner),  summation  (§  22),  contraction  (§  24),  substitution  (§  25), 
raising  and  lowering  suffixes  (§  26),  covariant  differentiation  (§§  29,  30).  There 

is  no  operation  of  division ;  but  an  inconvenient  factor  g^v  or  g*v  can  be 
removed  by  multiplying  through  by  g^  or  g^  so  as  to  form  the  substitution- 
operator.  The  operation  of  summation  is  practically  outside  our  control  and 

always  presents  itself  as  a  fait  accompli.  The  most  characteristic  process  of 

manipulation  in  this  calculus  is  the  free  alteration  of  dummy  suffixes  (those 

appearing  twice  in  a  term);  it  is  probably  this  process  which  presents  most 

difficulty  to  the  beginner. 

Of  special  interest  are  the  fundamental  tensors  or  world-tensors,  of  which  we 
have  discovered  two,  viz.  g^v  and  B^^.  The  latter  has  been  expressed  in  terms 
of  the  former  and  its  first  and  second  derivatives.  It  is  through  these  that  the 

gap  between  pure  geometry  and  physics  is  bridged ;  in  particular  g^v  relates 

the  observed  quantity  ds  to  the  mathematical  coordinate  specification  d.>IL. 
Since  in  our  work  we  generally  deal  with  tensors,  the  reader  may  be  led 

to  overlook  the  rarity  of  this  property.  The  juggling  tricks  which  we  seem 

to  perform  in  our  manipulations  are  only  possible  because  the  material  used 
is  of  quite  exceptional  character. 

The  further  development  of  the  tensor  calculus  will  be  resumed  in  §  4S  ; 
but  a  stage  has  now  been  reached  at  which  wc  may  begin  to  apply  it  to  the 

theory  of  gravitation. 



CHAPTER  III 

THE  LAW  OF  GRAVITATION 

36.    The  condition  for  flat  space-time.    Natural  coordinates. 

A  region  of  the  world  is  called  flat  or  homaloidal  if  it  is  possible  to 
construct  in  it  a  Galilean  frame  of  reference. 

It  was  shown  in  §  4  that  when  the  <7M„  are  constants,  ds2  can  be  reduced 
to  the  sum  of  four  squares,  and  Galilean  coordinates  can  be  constructed.  Thus 

an  equivalent  definition  of  flat  space-time  is  that  it  is  such  that  coordinates 
can  be  found  for  which  the  g^  are  constants. 

When  the  g^v  are  constants  the  3-index  symbols  all  vanish ;  but  since  the 

3-index  symbols  do  not  form  a  tensor,  they  will  not  in  general  continue  to 
vanish  when  other  coordinates  are  substituted  in  the  same  flat  region.  Again, 

when  the  g^  are  constants,  the  Riemann-Christoffel  tensor,  being  composed 
of  products  and  derivatives  of  the  3-index  symbols,  will  vanish  ;  and  since  it 

is  a  tensor,  it  will  continue  to  vanish  when  any  other  coordinate-system  is 
substituted  in  the  same  region. 

Hence  the  vanishing  of  the  Riemann-Christoffel  tensor  is  a  necessary  condition 

for  flat  space- time. 
This  condition  is  also  sufficient — if  the  Riemann-Christoffel  tensor  vanishes 

space-time  must  be  flat.    This  can  be  proved  as  follows — 
We  have  found  (§  34)  that  if 

B'IUW  =  0    (361), 

it  is  possible  to  construct  a  uniform  vector-field  by  parallel  displacement  of 

a  vector  all  over  the  region.  Let  A^a)  be  four  uniform  vector-fields  given  by 
a  =1,2,  3,  4,  so  that 

or  by  (29-4)  ^  =  _  {eo-,  fi  A\a)    (36'2). 

Note  that  a  is  not  a  tensor-suffix,  but  merely  distinguishes  the  four  inde- 
pendent vectors. 

We  shall  use  these  four  uniform  vector-fields  to  define  a  new  coordinate- 

system  distinguished  by  accents.  Our  unit  mesh  will  be  the  hyperparallelo- 

piped  contained  by  the  four  vectors  at  any  point,  and  the  complete  mesh- 
system  will  be  formed  by  successive  parallel  displacements  of  this  unit  mesh 

until  the  whole  region  is  filled.  One  edge  of  the  unit  mesh,  given  in  the  old 
coordinates  by 

aXu  =  -4(i) , 

has  to  become  in  the  new  coordinates 

dx*  =  (1,  0,  0,  0). 
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Similarly  the  second  edge,  dxH.  =  A{2),  must  become  dxa'  =  (0,  1,  0,  0);  etc. 
This  requires  the  law  of  transformation 

dx„  =  A*a)  dxa'   (36-3). 

Of  course,  the  construction  of  the  accented  coordinate-system  depends  on  the 

possibility  of  constructing  uniform  vector-fields,  and  this  depends  on  (361) 
being  satisfied. 

Since  ds-  is  an  invariant 

g'apdxa'dxp  =  gfJ,vdxlxdxv 

=  gw,Ala)A\p)  dx/dxp'   by  (36-3). 

Hence  g'afi  =  g^A^A'^ . 
Accordingly,  by  differentiation, 

by  (36'2).    By  changing  dummy  suffixes,  this  becomes 

0g  a0    _      ,  H        j  V 

—  -d(«)4(/S) 

-  ?*  K>  e}  -  $rel,  {/io-,  e)  +  ■&£ 

=  0       by  (27-5). 

Hence  the  g'afi  are  constant  throughout  the  region.  We  have  thus  constructed 

a  coordinate-system  fulfilling  the  condition  that  the  g's  are  constant,  and  it 
follows  that  the  space-time  is  flat. 

It  will  be  seen  that  a  uniform  mesh-system,  i.e.  one  in  which  the  unit 

meshes  are  connected  with  one  another  by  parallel  displacement,  is  neces- 
sarily a  Cartesian  system  (rectangular  or  oblique).  Uniformity  in  this  sense 

is  impossible  in  space-time  for  which  the  Riemann-Christoffel  tensor  does  not 

vanish,  e.g.  there  can  be  no  uniform  mesh-system  on  a  sphere. 
When  space-time  is  not  flat  we  can  introduce  coordinates  which  will  be 

approximately  Galilean  in  a  small  region  round  a  selected  point,  the  g^v  being 

not  constant  but  stationary  there ;  this  amounts  to  identifying  the  curved 

space-time  with  the  osculating  flat  space-time  for  a  small  distance  round  the 
point.  Expressing  the  procedure  analytically,  we  choose  coordinates  such  that 

the  40  derivatives  dg^/dx^  vanish  at  the  selected  point.  It  is  fairly  obvious 

from  general  considerations  that  this  will  always  be  possible  ;  but  the  following 

is  a  formal  proof.  Having  transferred  the  origin  to  the  selected  point,  make 
the  following  transformation  of  coordinates 
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where  the  value  of  the  3-index  symbol  at  the  origin  is  to  be  taken.    Then  at dx€ 
the  origin 

dxj 

g: 
.(36-45), 

Hence  by  (313)  {p»,  p)' gjS  -  0, 

But  {/**>,  p}'      *-,  =  [fiv,  p}'gpe  =  \pv,  e) 

Hence  in  the  new  coordinates  the  3-index  symbols  vanish  at  the  origin ; 

and  it  follows  by  (27*4)  and  (27-5)  that  the  first  derivatives  of  the  g  ̂   vanish. 
This  is  the  preliminary  transformation  presupposed  in  §  4. 

We  pass  on  to  a  somewhat  more  difficult  transformation  which  is  important 

as  contributing  an  insight  into  the  significance  of  B^. 

It  is  not  possible  to  make  the  second  derivatives  of  the  g^v  vanish  at  the 

selected  point  (as  well  as  the  first  derivatives)  unless  the  Riemann-Christoffel 
tensor  vanishes  there ;  but  a  great  number  of  other  special  conditions  can  be 

imposed  on  the  100  second  derivatives  by  choosing  the  coordinates  suitably. 
Make  an  additional  transformation  of  the  form 

where  a£vo.  represents  arbitrary  coefficients  symmetrical  in  p,  v,  o\  This  new 
transformation  will  not  affect  the  first  derivatives  of  the  g^  at  the  origin, 

which  have  already  been  made  to  vanish  by  the  previous  transformation,  but 

it  alters  the  second  derivatives.    By  differentiating  (31*3),  viz. 

W>  ?\  '*r>  ~  ̂ r>  ?CP  l«A  €)  = dxp      doc^'  dxj  l      '  dxj dxj ' we  obtain  at  the  origin 

d     ,  ,,  dxe       dxa  dxp  dxy    3    ,    _     ,  cftr, 
{flv'  PY  xT'  -  tZT>  5T7  sirz-sr-  («& 

dxj  l     '    -    dxj      dx^  dxj  dxj  dxy        '  dx,/ dxj  dxj ' 

since  the  3-index  symbols  themselves  vanish.    Hence  by  (36'5) 
* 

—,\r,vtp)\tf9~4Xgi  jr-w, 

.i 

.  e\  —  a dxj  ir"' rj  '*?    ***»*<' dxv  ̂ '  ̂     ">*»' 
r)  Pi 

which  reduces  to  — }  {fiV,  e}'  -  ̂ -{pv,  e\  =  a^       (36'55). 

The  transformation  (36'5)  accordingly  increases  9  [pv,  e)jdxa  by  a*yd., 
Owing  to  the  symmetry  of  a^.v<T,  all  three  quantities 

dxa^e^    |r^«}'    9^^el 
*  For  the  disappearance  of  the  factor  £,  see  (35-6). 
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are  necessarily  increased  by  the  same  amount.    Now  the  unaltered  difference 

tk  {fj-a' e]  -  ha  ̂ e|  =  Bl-   (:36'6)- 
since  the  remaining  terms  of  (34*4 )  vanish  in  the  coordinates  here  used.  We 
cannot  alter  any  of  the  components  of  the  Riemann-Christoffel  tensor ;  but, 

subject  to  this  limitation,  the  alterations  of  the  derivatives  of  the  3-index 
symbols  are  arbitrary. 

The  most  symmetrical  way  of  imposing  further  conditions  is  to  make  a 
transformation  such  that 

k  ̂ e) + k  ̂ el + k {"' e] = °   (367)- 
There  are  80  different  equations  of  this  type,  each  of  which  fixes  one  of  the 

80  arbitrary  coefficients  a^w.  In  addition  there  are  20  independent  equa- 

tions of  type  (36-6)  corresponding  to  the  20  independent  components  of  the 
Riemann-Christoffel  tensor.  Thus  we  have  just  sufficient  equations  to  deter- 

mine uniquely  the  100  second  derivatives  of  the  g^.  Coordinates  such  that 

dgfiJdxc  is  zero  and  d2ghv/dx0da;T  satisfies  (36'7)  may  be  called  canonical 
coordinates. 

By  solving  the  100  equations  we  obtain  all  the  d2g^v/dxadxT  for  canonical 
coordinates  expressed  as  linear  functions  of  the  B^va . 

The  two  successive  transformations  which  lead  to  canonical  coordinates 

are  combined  in  the  formula 

At  the  origin  dxjdx^  =gl,  so  that  the  transformation  does  not  alter  any 
tensor  at  the  origin.    For  example,  the  law  of  transformation  of  O^  gives 

V«,V  ...(36-8). 

ii 

_p      dxa  dxp  dxy  a 

,y 

dxJ  dxj  d.r p 

~  ̂ nw 

The  transformation  in  fact  alters  the  curvature  and  hypercurvature  of  the 

axes  passing  through  the  origin,  but  does  not  alter  the  angles  of  intersection. 

Consider  any  tensor  which  contains  only  the  g^v  and  their  first  and  second 
derivatives.  In  canonical  coordinates  the  first  derivatives  vanish  and  the 

second  derivatives  are  linear  functions  of  the  B*V<T ;  hence  the  whole  tensor  is 
a  function  of  the  g^v  and  the  B^va.  But  neither  the  tensor  itself  nor  the  g^ 

and  B^a-  have  been  altered  in  the  reduction  to  canonical  coordinates,  hence 

the  same  functional  relation  holds  true  in  the  original  unrestricted  coordinates. 

We  have  thus  the  important  result — 

The  only  fundamental  tensors  which  do  not  contain  derivatives  of  g^  beyond 

the  second  order  are  functions  of  g^  and  B^. 
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This  shows  that  our  treatment  of  the  tensors  describing  the  character  of 

space-time  has  been  exhaustive  as  far  as  the  second  order.  If  for  suitably 
chosen  coordinates  two  surfaces  have  the  same  g^v  and  B^  at  some  point, 

they  will  be  applicable  to  one  another  as  far  as  cubes  of  the  coordinates ;  the 
two  tensors  suffice  to  specify  the  whole  metric  round  the  point  to  this  extent. 

Having  made  the  first  derivatives  vanish,  we  can  by  the  linear  transforma- 
tion explained  in  §  4  give  the  g^v  Galilean  values  at  the  selected  point. 

The  coordinates  so  obtained  are  called  natural  coordinates  at  the  point  and 

quantities  referred  to  these  coordinates  are  said  to  be  expressed  in  natural 
measure.  Natural  coordinates  are  thus  equivalent  to  Galilean  coordinates 

when  only  the  g^  and  their  first  derivatives  are  considered  ;  the  difference 

appears  when  we  study  phenomena  involving  the  second  derivatives. 

By  making  a  Lorentz  transformation  (which  leaves  the  coordinates  still 

a  natural  system)  we  can  reduce  to  rest  the  material  located  at  the  point,  or 
an  observer  supposed  to  be  stationed  with  his  measuring  appliances  at  the 

point.  The  natural  measure  is  then  further  particularised  as  the  proper- 
measure  of  the  material,  or  observer.  It  may  be  noticed  that  the  material 

will  be  at  rest  both  as  regards  velocity  and  acceleration  (unless  it  is  acted  on 

by  electromagnetic  forces)  because  there  is  no  field  of  acceleration  relative  to 
natural  coordinates. 

To  sum  up  this  discussion  of  special  systems  of  coordinates. — When  the 
Riemann-Christoffel  tensor  vanishes,  we  can  adopt  Galilean  coordinates 
throughout  the  region.  When  it  does  not  vanish  we  can  adopt  coordinates 

which  agree  with  Galilean  coordinates  at  a  selected  point  in  the  values  of  the 

g^  and  their  first  derivatives  but  not  in  the  second  derivatives;  these  are 

called  natural  coordinates  at  the  point.  Either  Galilean  or  natural  coordinates 

can  be  subjected  to  Lorentz  transformations,  so  that  we  can  select  a  system 

with  respect  to  which  a  particular  observer  is  at  rest ;  this  system  will  be  the 

proper-coordinates  for  that  observer.  Although  we  cannot  in  general  make 
natural  coordinates  agree  with  Galilean  coordinates  in  the  second  derivatives 

of  the  gy.v,  we  can  impose  80  partially  arbitrary  conditions  on  the  100  second 
derivatives ;  and  when  these  conditions  are  selected  as  in  (367)  the  resulting 
coordinates  have  been  called  canonical. 

There  is  another  way  of  specialising  coordinates  which  may  be  mentioned 

here  for  completeness.  It  is  always  possible  to  choose  coordinates  such  that 

the  determinant  g  =  —  1  everywhere  (as  in  Galilean  coordinates).  This  is 
explained  in  §  49. 

We  may  also  consider  another  class  of  specialised  coordinates — those 

which  are  permissible  in  special  problems.  There  are  certain  (non-Euclidean) 
coordinates  found  to  be  most  convenient  in  dealing  with  the  gravitational 

field  of  the  sun,  Einstein's  or  de  Sitter's  curved  world,  and  so  on.  It  must  be 
remembered,  however,  that  these  refer  to  idealised  problems,  and  coordinate- 
systems  with  simple  properties  can  only  be  approximately  realised  in  nature. 
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If  possible  a  static  system  of  coordinates  is  selected,  the  condition  for  this 

being  that  all  the  g^v  are  independent  of  one  of  the  coordinates  x4  (which 

must  be  of  timelike  character*).  In  that  case  the  interval  corresponding  to 

any  displacement  dx^  is  independent  of  the  "  time  "  x4.  Such  a  system  can, 
of  course,  only  be  found  if  the  relative  configuration  of  the  attracting  masses 

is  maintained  unaltered.  If  in  addition  it  is  possible  to  make  gu,gM,  g^  =  0 
the  time  will  be  reversible,  and  in  particular  the  forward  velocity  of  light 

along  any  track  will  be  equal  to  the  backward  velocity;  this  renders  the 

application  of  the  name  "  time  "  to  x4  more  just,  since  one  of  the  alternative 
conventions  of  §  11  is  satisfied.  We  shall  if  possible  employ  systems  which 

are  static  and  reversible  in  dealing  with  large  regions  of  the  world  ;  problems 
in  which  this  simplification  is  not  permissible  must  generally  be  left  aside  as 

insoluble — e.g.  the  problem  of  two  attracting  bodies.  For  small  regions  of  the 
world  the  greatest  simplification  is  obtained  by  using  natural  coordinates. 

37.    Einstein's  law  of  gravitation. 

The  contracted  Riemann-Christoffel  tensor  is  formed  by  setting  e  =  <r  in 

B^w   It  is  denoted  by  6?M„.    Hence  by  (34#4) 

6rV„=  {/xcr,  a}  {av,  <r}  -  {fiv,  cc]  [cur,  <r}+^-{/ia;  a]  -^-  {/iv,  a]  ...(37'1). 

The  symbols  containing  a  duplicated  suffix  are  simplified  by  (35*4),  viz. 
dxu 

{m°->°"}=^.-  log  V- /jr. 

Hence,  with  some  alterations  of  dummy  suffixes, 

d      ,  ,     .     ,  rtw      «        n      .  3: 

Gy-V  =  ~  dx~a  fr*"*  ̂   +  ̂a'  ®  <{V/3,  ̂   +  dx~dx~v  l°S^-9-  {A**,  «}  9—  log  V  -9 ..*...  (37-2). 

Contraction  by  setting  e  =  /a  does  not  provide  an  alternative  tensor,  because 

owing  to  the  antisymmetry  of  -BM„<rP  in  fi  and  p. 

The  law  GMI,  =  0   (37-3), 

in  empty  space,  is  chosen  by  Einstein  for  his  law  of  gravitation. 

We  see  from  (37*2)  that  CrM„  is  a  symmetrical  tensor ;  consequently  the  law 
provides  10  partial  differential  equations  to  determine  the  #M„.  It  will  be  found 

later  (§52)  that  there  are  4  identical  relations  between  them,  so  that  the 
number  of  equations  is  effectively  reduced  to  6.  The  equations  are  of  the 
second  order  and  involve  the  second  differential  coefficients  of  g^  linearly.  We 

proved  in  §36  that  tensors  not  containing  derivatives  beyond  the  second  must 

necessarily  be  compounded  from  g^  and  B^  ;  so  that,  unless  we  are  prepared 

*  dx4  will  be  timelike  if  yti  is  always  positive. 
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to  go  beyond  the  second  order,  the  choice  of  a  law  of  gravitation  is  very  limited, 

and  we  can  scarcely  avoid  relying  on  the  tensor  (t>„*. 
Without  introducing  higher  derivatives,  which  would  seem  out  of  place  in 

this  problem,  we  can  suggest  as  an  alternative  to  (37'3)  the  law 

GW  =  X$W    (374), 

where  A,  is  a  universal  constant.  There  are  theoretical  grounds  for  believing 
that  this  is  actually  the  correct  form  ;  but  it  is  certain  that  A.  must  be  an 

extremely  small  constant,  so  that  in  practical  applications  we  still  take  (37'3) 
as  sufficiently  approximate.  The  introduction  of  the  small  constant  \  leads  to 

the  spherical  world  of  Einstein  or  de  Sitter  to  which  we  shall  return  in 

Chapter  V. 

The  spur  G  =  g^Q^    t   (37-5) 

is  called  the  Gaussian  curvature,  or  simply  the  curvature,  of  space-time.  It 
must  be  remembered,  however,  that  the  deviation  from  flatness  is  described 

in  greater  detail  by  the  tensors  6rM„  and  B^^  (sometimes  called  components  of 
curvature)  and  the  vanishing  of  G  is  by  no  means  a  sufficient  condition  for  fiat 

space-time. 

Einstein's  law  of  gravitation  expresses  the  fact  that  the  geometry  of  an 
empty  region  of  the  world  is  not  of  the  most  general  Riemannian  type,  but  is 

limited.  General  Riemannian  geometry  corresponds  to  the  quadratic  form 

(2*1)  with  the  g's  entirely  unrestricted  functions  of  the  coordinates;  Einstein 
asserts  that  the  natural  geometry  of  an  empty  region  is  not  of  so  unlimited  a 

kind,  and  the  possible  values  of  the  g's  are  restricted  to  those  which  satisfy 
the  differential  equations  (37'3).  It  will  be  remembered  that  a  field  of  force 
arises  from  the  discrepancy  between  the  natural  geometry  of  a  coordinate- 

system  and  the  abstract  Galilean  geometry  attributed  to  it;  thus  any  law 

governing  a  field  of  force  must  be  a  law  governing  the  natural  geometry. 

That  is  why  the  law  of  gravitation  must  appear  as  a  restriction  on  the  pos- 

sible natural  geometry  of  the  world.  The  inverse-square  law,  which  is  a 
plausible  law  of  weakening  of  a  supposed  absolute  force,  becomes  quite  unin- 

telligible (and  indeed  impossible)  when  expressed  as  a  restriction  on  the 

intrinsic  geometry  of  space-time ;  we  have  to  substitute  some  law  obeyed 
by  the  tensors  which  describe  the  world-conditions  determining  the  natural 

geometry. 

38.    The  gravitational  field  of  an  isolated  particle. 

We  have  now  to  determine  a  particular  solution  of  the  equations  (37 \3). 

The  solution  which  we  shall  obtain  will  ultimately  be  shown  to  correspond  to 

the  field  of  an  isolated  particle  continually  at  rest  at  the  origin ;  and  in  seeking 

a  solution  we  shall  be  guided  by  our  general  idea  of  the  type  of  solution  to  be 

expected  for  such  a  particle.    This  preliminary  argument  need  not  be  rigorous ; 

*  The  law  BfliV(rp  =  0  (giving  flat  space- time  throughout  all  empty  regions)  would  obviously  be 
too  stringent,  since  it  does  not  admit  of  the  existence  of  irreducible  fields  of  force. 
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the  final  test  is  whether  the  formulae  suggested  by  it  satisfy  the  equations 
to  be  solved. 

In  flat  space-time  the  interval,  referred  to  spherical  polar  coordinates  and 
time,  is 

ds2  =  -  dr*  -  r-d$-  -  r-  sin-  6d$2  +  dt2   (38-11). 

If  we  consider  what  modifications  of  this  can  be  made  without  destroying  the 
spherical  symmetry  in  space,  the  symmetry  as  regards  past  and  future  time, 

or  the  static  condition,  the  most  general  possible  form  appears  to  be 

ds*  =  -U  (r)  dr-  -  V(r)  {r2dd2  +  r2  sin2  6d<$>2)  +  W  (r)  dt' . .  .(3812), 
where  U,  V,  W  are  arbitrary  functions  of  r.    Let 

n2=r2F(r). 

Then  (3812)  becomes  of  the  form 

ds2  =  -  JJX  (rx)  dr?  -  r2dd2  -  r{-  sin2  6d(f>2  +  W,  (r,)  dt-  . .  .(3813), 

where  U-^  and  Wr  are  arbitrary  functions  of  rx.  There  is  no  reason  to  regard 
r  in  (3812)  as  more  immediately  the  counterpart  of  r  in  (3811)  than  rx  is.  If 

the  functions  U,  V,  W  differ  only  slightly  from  unity,  both  r  and  rl  will  have 

approximately  the  properties  of  the  radius- vector  in  Euclidean  geometry;  but 
no  length  in  non-Euclidean  space  can  have  exactly  the  properties  of  a  Euclidean 

radius- vector,  and  it  is  arbitrary  whether  we  choose  r  or  i\  as  its  closest  repre- 
sentative. We  shall  here  choose  rlf  and  accordingly  drop  the  suffix,  writing 

(3813)  in  the  form 

.    ds2  =  -  eKdr2  -  r2dd-  -  r2  sm2dd<f>2  +  evdt2   (38-2), 

where  X  and  v  are  functions  of  r  only. 

Moreover  since  the  gravitational  field  (or  disturbance  of  flat  space-time) 
due  to  a  particle  diminishes  indefinitely  as  we  go  to  an  infinite  distance,  we 

must  have  X  and  v  tend  to  zero  as  r  tends  to  infinity.  Formula  (382)  will 
then  reduce  to  (3811)  at  an  infinite  distance  from  the  particle. 

Our  coordinates  are 

Ou-y  =—  /  j     t£-o ==  u f     a  3  ̂—  ©j     oc±  ̂ =  ijy 

and  the  fundamental  tensor  is  by  (38*2) 

9n  =  ~e\     g*  =  -r2,    gXi  =  -r2sm26,    gu  =  e"   (3831), 

and  g^  =  0   if  fi^v. 

The  determinant  g  reduces  to  its  leading  diagonal  gng-2og3Zgu.    Hence 

-g  =  ex+»r*am*0      (38*32), 

and  gu  =  l/gn,  etc.,  so  that 

gn  =  _e-K>    g22  =  _iiri)     g»  =  -l/r*aw*0,    gu  =  e~v...  (38*33). 

Since  all  the  g^v  vanish  except  when  the  two  suffixes  are  the  same,  the 

summation  disappears  in  the  formula  for  the  3-index  symbols  (27 '2),  and 

6—2 
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If  fx,  v,  a  denote  different  suffixes  we  get  the  following  possible  cases  (the 
summation  convention  being  suspended) : 

fomri-    to^fe-* 
=  l^(log£W)  \ 

{W  v}=-  if  | 

.(38-4). 
{fiv,  v)  =      \g 

vv      "' 
a^  'i^C^fr) 

{/iV,  O"}   =  0 
It  is  now  easy  to  go  systematically  through  the  40  3- index  symbols  cal- 

culating the  values  of  those  which  do  not  vanish.  We  obtain  the  following 
results,  the  accent  denoting  differentiation  with  respect  to  r : 

{11,1}=  *v 

{12,  2}  =  1/r 

{13,  3}  =  1/r 

{14,4}=!*/ 
{22,  l}=-re-K  \   (38-5). 

{23,  3}  =  cot  6 

{33,  l}  =  -rsin20e-A 
{33,  2}  =  -  sin  0  cos  6 

{44,  l}  =  |e— V 
The  remaining  31  symbols  vanish.   Note  that  {21,  2)  is  the  same  as  {12,  2},  etc. 

These  values  must  be  substituted  in  (37"2).    As  there  may  be  some  pitfalls 
in  carrying  this  out,  we  shall  first  write  out  the  equations  (37"2)  in  full,  omit- 

ting the  terms  (223  in  number)  which  now  obviously  vanish. 

Gu  =  -|;  {11,1} +{11,1}  {11,1} +  {12, 2}  {12, 2} +  {13, 3}  {13, 3} +  {14, 4}  {14, 4} 

<?.  =  -£  {22,  1}  +  2  {22,  1}  {21,  2}  +  {23,  3}  {23,  3}  +^log  */~g dr 
W 

-{22,l}£logV-^ 
dr 

0B— ^{38,  1}  -~  {33,  2}  +  2  {33,  1]  {31,  3}  +  2  {33,  2}  {32,  3} 

"  {33,  1}  I  log  V  —g  -  {33,  2}  *  log  V^, 3r 3<9 

^=-^{44,  l}  +  2{44,  l}{41,4}-{44,  l}^logV-^, 

G12=     {13,  3}  {23,  3}  -{12,  2}  ~  log  V^. 

The  remaining  components  contain  no  surviving  terms. 
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Substitute  from  (38-5)  and  (38-32)  in  these,  and  collect  the  terms.    The 
equations  to  be  satisfied  become 

Gu  =  $»/'-£Vi/  +  £i/»-X7r  =  0   (38-61), 

G.22  =  e-*(l+±r(v'  -\'))-l=0      (38-62), 

G33  =  sinJ  6 .  e-A  (1  +  $r  (j/  -  \'))  -  sin2  6  =  0      (38-63), 

G44  =  e"-x(-  \v"  +  J\V  -  |i/a  -  z//r)  =  0     (38-64), 

G12  =  0  =0     (38-65). 

We  may  leave  aside  (38'63)  which  is  a  mere  repetition  of  (38-62) ;  then  there 
are  left  three  equations  to  be  satisfied  by  X  and  v.  From  (38-61)  and  (38  64) 

we  have  \'  =  —  v '.  Since  \  and  v  are  to  vanish  together  at  r  =  oo  ,  this  requires that 
•     X  =  -  v. 

Then  (38-62)  becomes  ev  (1  +  rv)  =  1. 

Set  ev  =  y,  then  y  +  ry  =  1. 

Hence,  integrating,  7  =  1     (38-7), 

where  2m  is  a  constant  of  integration. 

It  will  be  found  that  all   three  equations  are  satisfied  by  this  solution. 

Accordingly,  substituting  e~x  =  e"  —  y  in  (38-2), 

ds2  -  -  y~ldr2  -  r2dd2  -  r-  sin2  6 >d<j>2  +  ydt2   (38"8), 

where  7  =  1  —  2m/r,  is  a  particular  solution  of  Einstein's  gravitational  equations 
6rM„  =  0.    The  solution  in  this  form  was  first  obtained  by  Schwarzschild. 

39.   Planetary  orbits. 

According  to  (15*7)  the  track  of  a  particle  moving  freely  in  the  space-time 

given  by  (38*8)  is  determined  by  the  equations  of  a  geodesic  (28'5),  viz. 

15?+>.°)K'  =  0    (391). 
Taking  first  a  =  2,  the  surviving  terms  are 

.     1&  +  [12'2]^  ̂   +  ̂21'2}^^  +  ̂33'2^  rfF=0' 
or  using  (38'5) 

d26     2  dr  d6  n    .     „  /dd>\2     _  /on  ox 

Choose  coordinates  so  that  the  particle  moves  initially  in  the  plane  6  =  \  tt. 

Then  dd/ds  =  0  and  cos  6  =  0  initially,  so  that  d20/ds2  =  0.  The  particle  there- 
fore continues  to  move  in  this  plane,  and  we  may  simplify  the  remaining 

equations  by  putting  Q  =  \tt  throughout.  The  equations  for  o=  1,  3,  4  are 
found  in  like  manner,  viz. 
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^  +  ?^  =  0   (39-32), ds2      r  as  as 

s+"'st=°   (3933)- 
The  last  two  equations  may  be  integrated  immediately,  giving 

r2^=h    (39-41), 

^  =  ce-v  =  c/y      (39-42), 

where  h  and  c  are  constants  of  integration. 

Instead  of  troubling  to  integrate  (3931)  we  can  use  in  place  of  it  (38*8) 
which  plays  here  the  part  of  an  integral  of  energy.    It  gives 

7"
 

■^Y  +  WtV-7ffY  =  -l      (39-43). \dsj  T'    \dsJ       r\dsJ 

Eliminating  dt  and  ds  by  means  of  (39'41)  and  (3942) 

r(**Y  +  »     *__i       (39-44), 
7  \r2  d<pj       r2     7 

whence,  multiplying  through  by  7  or  (1  —  2m/?-), 

h  dr\2     h2  _  -      2m      2m    /i2 
~ i  ~T~i        "1   o  —  Cr  —  1  H   1  .        , 

r2  a<£/       r2  r         r      r2 
or  writing  1/r  =  u, 

'du\2       „     c2  —  1  ,2m         _      „  /on  c\ 

,#)  +«!=Tr-+1T«  +  2m«s      (39-5). .  du 

Differentiating  with  respect  to  </>,  and  removing  the  factor  -j-r , 

^  +  u==™2  +  3mu>   (39-61), 

with  r^  =  h    '.(39-62). 
Compare  these  with  the  equations  of  a  Newtonian  orbit 

d2u  m  /on-7i\ 

dj*+u=h>    (3971) 

with  r2^=h      (39-72). 

In  (39-61)  the  ratio  of  3mw2  to  mjh-  is  Sh2u2,  or  by  (39'62) 

»('3)'- 
For  ordinary  speeds  this  is  an  extremely  small  quantity — practically  three 
times  the  square  of  the  transverse  velocity  in  terms  of  the  velocity  of  light. 

For  example,  this  ratio  for  the  earth  is  "00000003.    In  practical  cases  the  extra 

I 
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term  in  (39  61)  will  represent  an  almost  inappreciable  correction  to  the  New- 

tonian orbit  (39*71). 

Again  in  (39"62)  and  (39-72)  the  difference  between  ds  and  dt  is  equally 
insignificant,  even  if  we  were  sure  of  what  is  meant  by  dt  in  the  Newtonian 

theory.  The  proper-time  for  the  body  is  ds,  and  it  might  perhaps  be  urged 
that  dt  in  equation  (3972)  is  intended  to  refer  to  this  ;  but  on  the  other  hand 

s  cannot  be  used  as  a  coordinate  since  ds  is  not  a  complete  differential,  and 

Newton's  "  time  "  is  always  assumed  to  be  a  coordinate. 
Thus  it  appears  that  a  particle  moving  in  the  field  here  discussed  will 

behave  as  though  it  were  under  the  influence  of  the  Newtonian  force  exerted 

by  a  particle  of  gravitational  mass  m  at  the  origin,  the  motion  agreeing  with 
the  Newtonian  theory  to  the  order  of  accuracy  for  which  that  theory  has  been 
confirmed  by  observation. 

By  showing  that  our  solution  satisfies  (rM„  =  0,  we  have  proved  that  it 
describes  a  possible  state  of  the  world  which  might  be  met  with  in  nature 

under  suitable  conditions.  By  deducing  the  orbit  of  a  particle,  we  have  dis- 
covered how  that  state  of  the  world  would  be  recognised  observationally  if  it 

did  exist.  In  this  way  we  conclude  that  the  space-time  field  represented  by 

(38-8)  is  the  one  which  accompanies  (or  "  is  due  to  ")  a  particle  of  mass  m  at 
the  origin. 

The  gravitational  mass  m  is  the  measure  adopted  in  the  Newtonian  theory 

of  the  power  of  the  particle  in  causing  a  field  of  acceleration  around  it,  the 

units  being  here  chosen  so  that  the  velocity  of  light  and  the  constant  of  gravi- 
tation are  both  unity.  It  should  be  noticed  that  we  have  as  yet  given  no 

reason  to  expect  that  m  in  the  present  chapter  has  anything  to  do  with  the 

m  introduced  in  §  12  to  measure  the  inertial  properties  of  the  particle. 

For  a  circular  orbit  the  Newtonian  theory  gives 

m  =  oy3r3  =  v2r, 

the  constant  of  gravitation  being  unity.  Applying  this  to  the  earth,  v  =  30  km. 

per  sec.  =  lO-"1  in  terms  of  the  velocity  of  light,  and  r  =  1*5  .  108  km.  Hence 
the  mass  m  of  the  sun  is  approximately  l'o  kilometres.  The  mass  of  the  earth 
is  l/300,000th  of  this,  or  about  5  millimetres*. 

More  accurately,  the  mass  of  the  sun,  T99 .  10s3  grams,  becomes  in  gravi- 
tational units  1'47  kilometres;  and  other  masses  are  converted  in  a  like 

proportion. 

*  Objection  is  sometimes  taken  to  the  use  of  a  centimetre  as  a  unit  of  gravitational  (i.e. 
gravitation-exerting)  mass;  but  the  same  objection  would  apply  to  the  use  of  a  gram,  since  the 
gram  is  properly  a  measure  of  a  different  property  of  the  particle,  viz.  its  inertia.  Our  constant 

of  integration  m  is  clearly  a  length  and  the  reader  may,  if  he  wishes  to  make  this  clear,  call  it 

the  gravitational  radius  instead  of  the  gravitational  mass.  But  when  it  is  realised  thai  the  gravi- 
tational radius  in  centimetres,  the  inertia  in  grains,  and  the  energy  in  ergs,  are  merely  measure 

numbers  in  different  codes  of  the  same  intrinsic  quality  of  the  particle,  it  seems  unduly  pedantic 

to  insist  on  the  older  discrimination  of  these  units  which  grew  up  on  the  assumption  that  they 

measured  qualities  which  were  radically  different. 
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40.    The  advance  of  perihelion. 

The  equation  (39 "5)  for  the  orbit  of  a  planet  can  be  integrated  in  terms 
of  elliptic  functions ;  but  we  obtain  the  astronomical  results  more  directly  by 

a  method  of  successive  approximation.    We  proceed  from  equation  (39-61) 

g  +  i.-  +  8i>    (401). 
Neglecting  the  small  term  3mu2,  the  solution  is 

u  =  1-2(l  +  ecos((j)--s7))    (40-2), ft 

as  in  Newtonian  dynamics.  The  constants  of  integration,  e  and  ot,  are  the 

eccentricity  and  longitude  of  perihelion. 

Substitute  this  first  approximation  in  the  small  term  3raw2,  then  (4(V  1) 
becomes 

d"u  m     _  m3     nmz  ,  ,         .      3  m3  „  .,      t       _,  , 

^-2  +  w  =  ̂   +  3^  +  6Fecos(c/>-OT)  +  2Fe2(l+^cos^-^)) 
  (40-3). 

Of  the  additional  terms  the  only  one  which  can  produce  an  effect  within  the 

range  of  observation  is  the  term  in  cos  (<f>  —  -sr) ;  this  is  of  the  right  period  to 
produce  a  continually  increasing  effect  by  resonance.  Remembering  that  the 
particular  integral  of d2  u  , 

Zp  +  u-Aa** is  u  =  ̂ A<p  sin  <£>, 

this  term  gives  a  part  of  u 

Wi  =  3  jj  e<f>  sm  ((/>  -  to)      (40-4), 

which  must  be  added  to  the  complementary  integral  (40*2).  Thus  the  second 
approximation  is 

u  =  j-  ( 1  +  e  cos  (cf)  —  ot)  +  3  -j-  ecf>  sin  (</>  —  ct)  J 

=  j-2  (1  +  e  cos  ((f)  -  nr  —  8zj)), 
finn% 

where  Ssr  =  3  -j- <f>   (40-5), 

and  (Sct)2  is  neglected. 
Whilst  the  planet  moves  through  1  revolution,  the  perihelion  •sr  advances 

a  fraction  of  a  revolution  equal  to 

S«r      3m*  3m 

(f)        h*       a(l-e2)   
{Vb)' 

using  the  well-known  equation  of  areas  h2  =  ml  =  ma  (1  —  e2). 
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Another  form  is  obtained  by  using  Kepler's  third  law, 

=  {T)a> 

m 

.  .  Sot  127r2a2  ,._,_. 

SlvmS  -*Z*T*{\-#)     (40'7)' 
where  T  is  the  period,  and  the  velocity  of  light  c  has  been  reinstated. 

This  advance  of  the  perihelion  is  appreciable  in  the  case  of  the  planet 

Mercury,  and  the  predicted  value  is  confirmed  by  observation. 

For  a  circular  orbit  we  put  dr/ds,  d*r/ds2  —  0,  so  that  (39'31)  becomes 

Whence  (  J*  J  =\ev  v'Jr  =  \  y'/r 
=  m/r\ 

so  that  Kepler's  third  law  is  accurately  fulfilled.  This  result  has  no  obser- vational significance,  
being  merely  a  property  of  the  particular  definition  of  r 

here  adopted.  Slightly  different  coordinate-systems  
exist  which  might  with 

equal  right  claim  to  correspond  to  polar  coordinates  in  flat  space-time ;  and 

for  these  Kepler's  third  law  would  no  longer  be  exact. We  have  to  be  on  our  guard  against  results  of  this  latter  kind  which  would 

only  be  of  interest  if  the  radius-vector  were  a  directly  measured  quantity  in- 
stead of  a  conventional  coordinate.  The  advance  of  perihelion  is  a  phenomenon 

of  a  different  category.  Clearly  the  number  of  years  required  for  an  eccentric 

orbit  to  make  a  complete  revolution  returning  to  its  original  position  is  capable 

of  observational  test,  unaffected  by  any  convention  used  in  defining  the  exact 

length  of  the  radius-vector. 
For  the  four  inner  planets  the  following  table  gives  the  corrections  to  the 

centennial  motion  of  perihelion  predicted  by  Einstein's  theory : 
Sot  sSot 

Mercury 

+  42"-9 
+  8"-82 

Venus 

+     8-6 
+  0-05 Earth 

+     3-8 +  0-07 Mars +     135 
+  0-13 The  product  sSot  is  a  better  measure  of  the  observable  effect  to  be  looked  for, 

and  the  correction  is  only  appreciable  in  the  case  of  Mercury.  After  applying 

these  corrections  to  ehts,  the  following  discrepancies  between  theory  and  ob- 
servation remain  in  the  secular  changes  of  the  elements  of  the  inner  planets, 

i  and  H  being  the  inclination  and  the  longitude  of  the  node  : 

eS-us  Be  sini'Sft  Si 

Mercury  -  0"'58  +  0"'29  -  0"'88  ±  0"'33  +0"'46±0"'34  +0"'38±0  54 
Venus        -   011  ±   017     +   O'Sfl  ±   021     +  053  ±   0-12     +   038  ±   022 

Earth  000  ±   009     +   002+   0'07           -    022+   0-18 

Mars  +   0-51  ±   0"23     +   029+   018     -    011  ±    015     -   001  f   0-13 
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The  probable  errors  here  given  include  errors  of  observation,  and  also  errors 
in  the  theory  due  to  uncertainty  of  the  masses  of  the  planets.  The  positive 

sign  indicates  excess  of  observed  motion  over  theoretical  motion*. 

Einstein's  correction  to  the  perihelion  of  Mercury  has  removed  the  prin- 
cipal discordance  in  the  table,  which  on  the  Newtonian  theory  was  nearly  30 

times  the  probable  error.  Of  the  15  residuals  8  exceed  the  probable  error, 

and  3  exceed  twice  the  probable  error — as  nearly  as  possible  the  proper  pro- 
portion. But  whereas  we  should  expect  the  greatest  residual  to  be  about  3 

times  the  probable  error,  the  residual  of  the  node  of  Venus  is  rather  excessive 
at  4|  times  the  probable  error,  and  may  perhaps  be  a  genuine  discordance. 

Einstein's  theory  throws  no  light  on  the  cause  of  this  discordance. 
41.    The  deflection  of  light. 

For  motion  with  the  speed  of  light  ds  =  0,  so  that  by  (39'62)  //  =  cc ,  and 
the  orbit  (3961)  reduces  to 

|£+i£-3im*      (411). 

The  track  of  a  light-pulse  is  also  given  by  a  geodesic  with  ds  =  0  according  to 

(15-8).    Accordingly  the  orbit  (41*1)  gives  the  path  of  a  ray  of  light. 
We  integrate  by  successive  approximation.    Neglecting  Smu2  the  solution 

of  the  approximate  equation d'2u  . 

.(41-2). 
is  the  straight  line  u  =  — j~-      

Substituting  this  in  the  small  term  Smii2,  we  have 
d?u  3m      .  , 

A  particular  integral  of  this  equation  is 

ih  =  ̂   (cos2<£  +  2  sina<£), 

so  that  the  complete  second  approximation  is 

u=^^+~2(cos2<£  +  2sin2</>)      (41-3). 

Multiply  through  by  rR, 

R  =  r  cos  (f>  +  p  (r  cos2  <f>  +  2r  sin2  (/>), 

or  in  rectangular  coordinates,  x  =  r  cos  <f>,  y  =  r  sin  <f>, 

„      m    x2  +  2w2 x  =  R-—  —j— — ^      (41-4). 
R  V(tf2  +  y2)  v       J 

Newcomb,  Astronomical  Constants.  His  results  have  been  slightly  corrected  by  using  a 
modern  value  of  the  constant  of  precession  in  the  above  table ;  see  de  Sitter,  Monthly  Notices, vol.  76,  p.  728. 
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The  second  term  measures  the  very  slight  deviation  from  the  straight  line 

x—R.  The  asymptotes  are  found  by  taking  y  very  large  compared  with  as. 
The  equation  then  becomes 

x=R-^(±2y)> 

and  the  small  angle  between  the  asymptotes  is  (in  circular  measure) 
4m 
~R' 

For  a  ray  grazing  the  sun's  limb,  m  =  1*47  km.,  R  =  697,000  km.,  so  that  the 
deflection  should  be  1""75.  The  observed  values  obtained  by  the  British 
eclipse  expeditions  in  1919  were 

Sobral  expedition        1"98  ±  0"12 

Principe  expedition     1"*61  +  0""30 
It  has  been  explained  in  Space,  Time  and  Gravitation  that  this  deflection 

is  double  that  which  might  have  been  predicted  on  the  Newtonian  theory. 

In  this  connection  the  following  paradox  has  been  remarked.  Since  the  cur- 
vature of  the  light-track  is  doubled,  the  acceleration  of  the  light  at  each  point 

is  double  the  Newtonian  acceleration  ;  whereas  for  a  slowly  moving  object  the 

acceleration  is  practically  the  same  as  the  Newtonian  acceleration.  To  a  man 

in  a  lift  descending  with  acceleration  m/r*  the  tracks  of  ordinary  particles  will 
appear  to  be  straight  lines ;  but  it  looks  as  though  it  would  require  an  accele- 

ration 2m/r-  to  straighten  out  the  light-tracks.  Does  not  this  contradict  the 
principle  of  equivalence  ? 

The  fallacy  lies  in  a  confusion  between  two  meanings  of  the  word  "  curva- 

ture." The  coordinate  curvature  obtained  from  the  equation  of  the  track  (41'4) 
is  not  the  geodesic  curvature.  The  latter  is  the  curvature  with  which  the  local 

observer — the  man  in  the  lift — is  concerned.  Consider  the  curved  light-track 

traversing  the  hummock  corresponding  to  the  sun's  field  ;  its  curvature  can  be 
reckoned  by  projecting  it  either  on  the  base  of  the  hummock  or  on  the  tangent 

plane  at  any  point.  The  curvatures  of  the  two  projections  will  generally  be 

different.  The  projection  into  Euclidean  coordinates  (x,  y)  used  in  (41 '4)  is  the 
projection  on  the  base  of  the  hummock;  in  applying  the  principle  of  equiva- 

lence the  projection  is  on  the  tangent  plane,  since  we  consider  a  region  of  the 
curved  world  so  small  that  it  cannot  be  discriminated  from  its  tangent  plane. 

42.    Displacement  of  the  Fraunhofer  lines. 

Consider  a  number  of  similar  atoms  vibrating  at  different  points  in  the 

region.  Let  the  atoms  be  momentarily  at  rest  in  our  coordinate-system 
(r,  6,  <f>,  t).  The  test  of  similarity  of  the  atoms  is  that  corresponding  intervals 
should  be  equal,  and  accordingly  the  interval  of  vibration  of  all  the  atoms  will 
be  the  same. 

Since  the  atoms  are  at  rest  we  set  dr,  dd,  d(f>  =  0  in  (38*8),  so  thai 

dtp^ydt9    (421). 
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Accordingly  the  times  of  vibration,  of  the  differently  placed  atoms  will  be 

inversely  proportional  to  *Jy. 
Our  system  of  coordinates  is  a  static  system,  that  is  to  say  the  g^  do  not 

change  with  the  time.  (An  arbitrary  coordinate-system  has  not  generally  this 
property ;  and  further  when  we  have  to  take  account  of  two  or  more  attracting 

bodies,  it  is  in  most  cases  impossible  to  find  a  strictly  static  system  of  coordi- 
nates.) Taking  an  observer  at  rest  in  the  system  (r,  6,  <f>,  t)  a  wave  emitted 

by  one  of  the  atoms  will  reach  him  at  a  certain  time  Bt  after  it  leaves  the 

atom ;  and  owing  to  the  static  condition  this  time-lag  remains  constant  for 

subsequent  waves.  Consequently  the  waves  are  received  at  the  same  time- 
periods  as  they  are  emitted.  We  are  therefore  able  to  compare  the  time-periods 
dt  of  the  different  atoms,  by  comparing  the  periods  of  the  waves  received  from 

them,  and  can  verify  experimentally  their  dependence  on  the  value  of  \Ay  at 

the  place  where  they  were  emitted.  Naturally  the  most  hopeful  test  is  the 

comparison  of  the  waves  received  from  a  solar  and  a  terrestrial  atom  whose 

periods  should  be  in  the  ratio  1-00000212  : 1.  For  wave-length  4000  A,  this 

amounts  to  a  relative  displacement  of  0*0082  A  of  the  respective  spectral 
lines.  The  verdict  of  experiment  is  not  yet  such  as  to  secure  universal  assent; 

but  it  is  now  distinctly  more  favourable  to  Einstein's  theory  than  when  Space, 
Time  and  Gravitation  was  written. 

The  quantity  dt  is  merely  an  auxiliary  quantity  introduced  through  the 

equation  (38*8)  which  defines  it.  The  fact  that  it  is  carried  to  us  unchanged 
by  light-waves  is  not  of  any  physical  interest,  since  dt  was  defined  in  such  a 
way  that  this  must  happen.  The  absolute  quantity  ds,  the  interval  of  the 
vibration,  is  not  carried  to  us  unchanged,  but  becomes  gradually  modified  as 

the  waves  take  their  course  through  the  non-Euclidean  space-time.  It  is  in 

transmission  through  the  solar  system  that  the  absolute  difference  is  intro- 
duced into  the  waves,  which  the  experiment  hopes  to  detect. 

The  argument  refers  to  similar  atoms  and  the  question  remains  whether, 

for  example,  a  hydrogen  atom  on  the  sun  is  truly  similar  to  a  hydrogen  atom 
on  the  earth.  Strictly  speaking  it  cannot  be  exactly  similar  because  it  is  in  a 

different  kind  of  space-time,  in  which  it  would  be  impossible  to  make  a  finite 

structure  exactly  similar  to  one  existing  in  the  space-time  near  the  earth.  But 
if  the  interval  of  vibration  of  the  hydrogen  atom  is  modified  by  the  kind  of 

space-time  in  which  it  lies,  the  difference  must  be  dependent  on  some  invariant 

of  the  space-time.  The  simplest  invariant  which  differs  at  the  sun  and  the 

earth  is  the  square  of  the  length  of  the  Riemann-Christoffel  tensor,  viz. 

The  value  of  this  can  be  calculated  from  (38*8)  by  the  method  used  in  that 
section  for  calculating  the  CrM„.    The  result  is 

48 

m2 
2»6

 I 
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By  consideration  of  dimensions  it  seems  clear  that  the  proportionate  change 
of  ds  would  be  of  the  order 

where  a  is  the  radius  of  the  atom  ;  there  does  not  seem  to  be  any  other  length 

concerned.  For  a  comparison  of  solar  and  terrestrial  atoms  this  would  be  about 

10"100.  In  any  case  it  seems  impossible  to  construct  from  the  invariants  of 
space-time  a  term  which  would  compensate  the  predicted  shift  of  the  spectral 
lines,  which  is  proportional  to  mfr. 

43.    Isotropic  coordinates. 

We  can  transform  the  expression  for  the  interval  (38'8)  by  making  the 
substitution 

1+o-Tn    (43-1), 

\2 

2rj 

1  -  pjdr„ 

Then  (38-8)  becomes n  —  ml2r  V 

ds>  =  _  (i  +  mj2riy  (dr{  +  ri"«W  +  *v  sin2  6d<p)  +  K    +     '»  dP  . .  .(43-2). 

The  coordinates  (ru  6,  </>)  are  called  isotropic  polar  coordinates.    The  cor- 
responding isotropic  rectangular  coordinates  are  obtained  by  putting 

x  =  r1  sin  6  cos  </>,     y  =  rx  sin  0  sin  <£,     z  —  rx  cos  6, 
giving 

ds*  m  _  (i  +  mj2riy  (da*  +  dtf  +  dz*)  +  ((*  ~  n^y  dP    . .  .(43-3), 
with  r,  =  V(«2  +  2/2  +  z2)- 

This  system  has  some  advantages.  For  example,  to  obtain  the  motion  of 

a  light-pulse  we  set  ds  =  0  in  (43-3).    This  gives 

dxV     (<fy\*      (dzV     (1  -  m\<Lr,J 
dt)  +\dt)  +\dtJ  '    {l  +  m/Zry 

At  a  distance  rx  from  the  origin  the  velocity  of  light  is  accordingly 

(1  zml2r1) 

(l+mj2riyt   
V  ' 

in  all  directions.    For  the  original  coordinates  of  (38'8)  the  velocity  of  light  is 
not  the  same  for  the  radial  and  transverse  directions. 

Again  in  the  isotropic  system  the  coordinate  length  (\/(dx-  +  dtf  +  dz-j)  of 
a  small  rod  which  is  rigid  (ds  =  constant)  does  not  alter  when  the  orientation 

of  the  rod  is  altered.  This  system  of  coordinates  is  naturally  arrived  at  when 

we  partition  space  by  rigid  scales  or  by  light-triangulations  in  a  small  region, 
e.g.  in  terrestrial  measurements.    Since  the  ultimate  measurements  involved 
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in  any  observation  are  carried  out  in  a  terrestrial  laboratory  we  ought,  strictly 

speaking,  always  to  employ  the  isotropic  system  which  conforms  to  assumptions 

made  in  those  measurements  *.  But  on  the  earth  the  quantity  m/r  is  negligibly 
small,  so  that  the  two  systems  coalesce  with  one  another  and  with  Euclidean 

coordinates.  Non-Euclidean  geometry  is  only  required  in  the  theoretical  part 

of  the  investigation — the  laws  of  planetary  motion  and  propagation  of  light 

through  regions  where  m/r  is  not  negligible ;  as  soon  as  the  light-waves  have 
been  safely  steered  into  the  terrestrial  observatory,  the  need  for  non-Euclidean 

geometry  is  at  an  end,  and  the  difference  between  the  isotropic  and  non-isotropic 
systems  practically  disappears. 

In  either  system  the  forward  velocity  of  light  along  any  line  is  equal  to 

the  backward  velocity.  Consequently  the  coordinate  t  conforms  to  the  con- 

vention (§11)  that  simultaneity  may  be  determined  by  means  of  light- signals. 
If  we  have  a  clock  at  A  and  send  a  light-signal  at  time  tA  which  reaches  B 
and  is  immediately  reflected  so  as  to  return  to  A  at  time  tA,  the  time  of  arrival 

at  B  will  be  h  (tA  +  tA')  just  as  in  the  special  relativity  theory.  But  the  alter- 
native convention,  that  simultaneity  can  be  determined  by  slow  transport  of 

chronometers,  breaks  down  when  there  is  a  gravitational  field.  This  is  evident 

from  §  42,  since  the  time-rate  of  a  clock  will  depend  on  its  position  in  the  field. 
In  any  case  slow  transport  of  a  clock  is  unrealisable  because  of  the  acceleration 
which  all  objects  must  submit  to. 

The  isotropic  system  could  have  been  found  directly  by  seeking  particular 

solutions  of  Einstein's  equations  having  the  form  (38"12),  or 

ds2  =  -  eKdr2  -  #■  (r2dd2  +  r~  sin2  6d$2)  +  evdt2, 

where  X,  /x,  v  are  functions  of  r.    By  the  method  of  §  38,  we  find 

,,2,1, 
Gn  =  H>"  +  \v"  +  -  /x   -\'  +  $fi*  —  %\  p  —  \\'v'  +  \v'2 

G22  =  e^  [1  +  2?y  +  \r  (V  -  V)  +  £?•>' '  +  |r>'  (/*'  +  \v'  -  U')]  -  1 

£33  =  #22  sin2  6 

„      1 

Y-
 

(jta,  = ,f-.\ +  -  v  +  \v yJ  —  \\'v'  +  \v"1 I 

  (43-5). The  others  are  zero. 

Owing  to  an  identical  relation  between  Gn,  G^  and  G44,  the  vanishing  of 
this  tensor  gives  only  two  equations  to  determine  the  three  unknowns  X,  /m,  v. 

There    exists    therefore   an  infinite  series  of  particular  solutions,  differing 

according  to  the  third  equation  between  \,  //.,  v  which  is  at  our  disposal.    The 

two  solutions  hitherto  considered  are  obtained  by  taking  /a  =  0,  and  \  =  p., 
respectively.    The  same  series  of  solutions  is  obtained  in  a  simpler  way  by 

substituting  arbitrary  functions  of  r  instead  of  r  in  (38*8). 

*  But  the  terrestrial  laboratory  is  falling  freely  towards  the  sun,  and  is  therefore  accelei-ated 
relatively  to  the  coordinates  (.r,  y,  z,  t). 
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The  possibility  of  substituting  any  function  of  r  for  r  without  destroying 

the  spherical  symmetry  is  obvious  from  the  fact  that  a  coordinate  is  merely 
an  identification-number ;  but  analytically  this  possibility  is  bound  up  with 
the  existence  of  an  identical  relation  between  Gn,  Gw  and  Gu,  which  makes 

the  equations  too  few  to  determine  a  unique  solution. 
This  introduces  us  to  a  theorem  of  great  consequence  in  our  later  work. 

If  Einstein's  ten  equations  G>„=  0  were  all  independent,  the  ten  #M„  would  be 
uniquely  determined  by  them  (the  boundary  conditions  being  specified).  The 

expression  for  ds2  would  be  unique  and  no  transformation  of  coordinates  would 
be  possible.  Since  we  know  that  we  can  transform  coordinates  as  we  please, 
there  must  exist  identical  relations  between  the  ten  (xM„ ;  and  these  will  be 

found  in  §  52. 

44.    Problem  of  two  bodies — Motion  of  the  moon. 

The  field  described  by  the  r/M„  may  be  (artificially)  divided  into  afield  of 

pure  inertia  represented  by  the  Galilean  values,  and  a  field  of  force  repre- 
sented by  the  deviations  of  the  g^v  from  the  Galilean  values.  It  is  not  possible 

to  superpose  the  fields  of  force  due  to  two  attracting  particles ;  because  the 

sum  of  the  two  solutions  will  not  satisfy  G>„  =  0,  these  equations  being  non- 
linear in  the  g^. 

No  solution  of  Einstein's  equations  has  yet  been  found  for  a  field  with  two 
singularities  or  particles.  The  simplest  case  to  be  examined  would  be  that  of 

two  equal  particles  revolving  in  circular  orbits  round  their  centre  of  mass. 

Apparently  there  should  exist  a  statical  solution  with  two  equal  singularities  ; 
but  the  conditions  at  infinity  would  differ  from  those  adopted  for  a  single 

particle  since  the  axes  corresponding  to  the  static  solution  constitute  what  is 
called  a  rotating  system.  The  solution  has  not  been  found,  and  it  is  even 

possible  that  no  such  statical  solution  exists.  I  do  not  think  it  has  yet  been 

proved  that  two  bodies  can  revolve  without  radiation  of  energy  by  gravitational 
waves.  In  discussions  of  this  radiation  problem  there  is  a  tendency  to  beg  the 

question ;  it  is  not  sufficient  to  constrain  the  particles  to  revolve  uniformly, 
then  calculate  the  resulting  gravitational  waves,  and  verify  that  the  radiation 

of  gravitational  energy  across  an  infinite  sphere  is  zero.  That  shows  that  a 

statical  solution  is  not  obviously  inconsistent  with  itself,  but  does  not  demon- 
strate its  possibility. 

The  problem  of  two  bodies  on  Einstein's  theory  remains  an  outstanding 

challenge  to  mathematicians — like  the  problem  of  three  bodies  on  Newton's 
theory. 

For  practical  purposes  methods  of  approximation  will  suffice.  We  shall 

consider  the  problem  of  the  field  due  to  the  combined  attractions  of  the  earl  li 

and  sun,  and  apply  it  to  find  the  modifications  of  the  moon's  orbit  required  by 
the  new  law  of  gravitation.  The  problem  has  been  treated  in  considerable 

detail  by  de  Sitter*.    We  shall  not  here  attempt  a  complete  survey  of  the 
*  Monthly  Notices,  vol.  77,  p.  155. 
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problem ;  but  we  shall  seek  out  the  largest  effects  to  be  looked  for  in  refined 
observations.    There  are  three  sources  of  fresh  perturbations  : 

(1)  The  sun's  attraction  is  not  accurately  given  by  Newton's  law,  and  the 

solar  perturbations  of  the  moon's  orbit  will  require  corrections. 
(2)  Cross-terms  between  the  sun's  and  the  earth's  fields  of  force  will  arise, 

since  these  are  not  additive. 

(3)  The  earth's  field  is  altered  and  would  inter  alia  give  rise  to  a  motion 

of  the  lunar  perigee  analogous  to  the  motion  of  Mercury's  perihelion.  It  is 
easily  calculated  that  this  is  far  too  small  to  be  detected. 

If  Cls,  ClE  are  the  Newtonian  potentials  of  the  sun  and  earth,  the  leading 

terms  of  (1),  (2),  (3)  will  be  relatively  of  order  of  magnitude 

n 

Si 

^Ls^-t-E, 

o, 

For  the  moon  £ls=750nE.  We  may  therefore  confine  attention  to  terms  of 

type  (1).  If  these  prove  to  be  too  small  to  be  detected,  the  others  will  pre- 
sumably be  not  worth  pursuing. 

We  were  able  to  work  out  the  planetary  orbits  from  Einstein's  law  inde- 

pendently of  the  Newtonian  theory  ;  but  in  the  problem  of  the  moon's  motion 
we  must  concentrate  attention  on  the  difference  between  Einstein's  and  New- 

ton's formulae  if  we  are  to  avoid  repeating  the  whole  labour  of  the  classical 
lunar  theory.  In  order  to  make  this  comparison  we  transform  (39'31)  and 

(39"32)  so  that  t  is  used  as  the  independent  variable. 

ds2 

\ds) 

dt2 

+ 

dt  d^ 

ds  dt 

dt 

ds 

(L_ 

dt 

dt 

ds 

dr_ 

dt2 

4-V  --\ 
+      dt  dt) 

by   (39-42). 

Hence  the  equations  (39  31)  and  (39'32)  become 

rdr\ 

dt2  '  2'v  \dt) 

~         \dt)  +%e  v=°> 

■ 

d24>     -.  /  dr  d<f>      2  dr  d(J)  _ 
dt"  dt  dt      r  dt  dt 

Whence 

&<}>  ,  2  dr  d<l>\ 

r(d^j2dr 
V  dt2  ̂   r  dt 

.(441), 

where 

and 

K  =  —%Xu2    v2  H   

&=-\'uv 

u  =  drjdt,     v  =  rd<f>jdt. 

.(44-21), 
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Equations  (44*1 )  show  that  R  and  <P  are  the  radial  and  transverse  per- 

turbing forces  which  Einstein's  theory  adds  to  the  classical  dynamics.  To  a 
sufficient  approximation  \'  =  —  2m/r2,  so  that 

.(44-22). R  =  ™(W- 

r3 

3>  =  —  .  2uv 

r2
 

In  three-dimensional  problems  the  perturbing  forces  become 

3>  =  — .2wt; 

r2 

.(4423). 

It  must  be  pointed  out  that  these  perturbing  forces  are  Einstein's  cor- 
rections to  the  law  of  central  force  ra/r2,  where  r  is  the  coordinate  used  in  our 

previous  work.  Whether  these  forces  represent  the  actual  differences  between 

Einstein's  and  Newton's  laws  depends  on  what  Newton's  r  is  supposed  to 
signify.  De  Sitter,  making  a  slightly  different  choice  of  r,  obtains  different 

expressions  for  R,  <J>*  One  cannot  say  that  one  set  of  perturbing  forces 
rather  than  the  other  represents  the  difference  from  the  older  theory,  because 

the  older  theory  was  not  sufficiently  explicit.  The  classical  lunar  theory 

has  been  worked  out  on  the  basis  of  the  law  mjr^ ;  the  ambiguous  quantity  r 
occurs  in  the  results,  and  according  as  we  have  assigned  to  it  one  meaning  or 

another,  so  we  shall  have  to  apply  different  corrections  to  those  results.  But 

the  final  comparison  with  observation  does  not  depend  on  the  choice  of  the 

intermediary  quantity  r. 

Take  fixed  rectangular  axes  referred  to  the  ecliptic  with  the  sun  as  origin, 
and  let 

(a,  0,  0)  be  the  coordinates  of  the  earth  at  the  instant  considered, 

{x,  y,  z)  the  coordinates  of  the  moon  relative  to  the  earth. 

Taking  the  earth's  orbit  to  be  circular  and  treating  the  mass  of  the  moon 

as  infinitesimal,  the  earth's  velocity  will  be  (0,  v,  0),  where  v"  =  tnja. 
To  find  the  difference  of  the  forces  72,  $>,  Z  on  the  moon  and  on  the  earth, 

we  differentiate  (44-23)  and  set 

8r  =  x,     h  (u,  v,  iv)  =  (dx/dt,  dyjdt,  dz/dt), 

and,  after  the  differentiation, 

r  =  a,     (u,  v,  w)  =  (0,  v,  0). 

*  Monthly  Notices,  vol.  7G,  p.  723,  equations  (58). 
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The  result  will  give  the  perturbing  forces  on  the  moon's  motion  relative  to 
the  earth,  viz. 

4<mx  „     6m2x     4>m    dy  _      2m2x      4m    dy\ BR  =  X 

aA 

v2  — 
<r 

a2      dt 

a* 

v 

a2 

dt 

-_       „     2m    dx 8<p=Y=^vTt 

z  =  o 

...(44-3). 

We  shall  omit  the  term  —  2m2xjai  in  X.  It  can  be  verified  that  it  gives 
no  important  observable  effects.  It  produces  only  an  apparent  distortion  of 

the  orbit  attributable  to  our  use  of  non-isotropic  coordinates  (§  43).  Trans- 
forming to  new  axes  (£,  ?;)  rotated  through  an  angle  6  with  respect  to  (x,  y) 

the  remaining  forces  become 

„     m 

a2 

m 
H  =  —  v 

a- 

2  cos  6  sin  6  %  -  (4  cos2  9  +  2  sin2  6)  ̂V dt  dtj 

2  cos  6  sin  6^  +  (4  sin2  d  +  2  cos3  6)  ̂J 

.(44-4). 

We  keep  the  axes  (£,  77)  permanently  fixed ;  the  angle  6  which  gives  the 
direction  of  the  sun  (the  old  axis  of  x)  will  change  uniformly,  and  in  the  long 

run  take  all  values  with  equal  frequency  independently  of  the  moon's  position 
in  its  orbit.  We  can  only  hope  to  observe  the  secular  effects  of  the  small  forces 

H,  H,  accumulated  through  a  long  period  of  time.  Accordingly,  averaging  the 

trigonometrical  functions,  the  secular  terms  are 
_  m    di]  0     dr]\ 
a=  —  3  —  v—  =  —  2a> 

a' 

dt dt 

H  = 

m    d%  d% 
S  —  v~=      zoo  ~ 

.(44-5), 

a"    dt  "  dt, 
where  w  —  \mv\a2   (44'6). 

If  (F^  Fy,)  is  the  Newtonian  force,  the  equations  of  motion  including  these 

secular  perturbing  forces  will  be 
d?<n  Jt 

.(44-7). 
dt2+2(°Tt-Fi> 

d'V       9„d%      F 

It  is  easily  seen  that  w  is  a  very  small  quantity,  so  that  or  is  negligible 

The  equations  (447)  are  then  recognised  as  the  Newtonian  equations  referred 

to  axes  rotating  with  angular  velocity  —  a>.  Thus  if  we  take  the  Newtonian 
orbit  and  give  it  an  angular  velocity  +  &>,  the  result  will  be  the  solution  of 

(447).  The  leading  correction  to  the  lunar  theory  obtained  from  Einstein's 
equations  is  a  precessional  effect,  indicating  that  the  classical  results  refer  to 

a  frame  of  reference  advancing  with  angular  velocity  w  compared  with  the 
general  inertial  frame  of  the  solar  system. 

From  this  cause  the  moon's  node  and  perigee  will  advance  with  velocity 
co.    If  n  is  the  earth's  angular  velocity 

^-?!^_3     10-8 

n~2 a~2  - 
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Hence  the  advance  of  perigee  and  node  in  a  century  is 

3tt.10-6  radians  =  l"-94. 

We  may  notice  the  very  simple  theoretical  relation  that  Einstein's  cor- 

rections cause  an  advance  of  the  moon's  perigee  which  is  one  half  the  advance 
of  the  earth's  perihelion. 

Neither  the  lunar  theory  nor  the  observations  are  as  yet  carried  quite  far 

enough  to  take  account  of  this  small  effect ;  but  it  is  only  a  little  below  the 

limit  of  detection.  The  result  agrees  with  de  Sitter's  value  except  in  the  second 
decimal  place  which  is  only  approximate. 

There  are  well-known  irregular  fluctuations  in  the  moon's  longitude  which 
attain  rather  large  values ;  but  it  is  generally  considered  that  these  are  not 

of  a  type  which  can  be  explained  by  any  amendment  of  gravitational  theory 

and  their  origin  must  be  looked  for  in  other  directions.  At  any  rate  Einstein's 
theory  throws  no  light  on  them. 

The  advance  of  l"'94s  per  century  has  not  exclusive  reference  to  the 

moon ;  in  fact  the  elements  of  the  moon's  orbit  do  not  appear  in  (44'6).  It 
represents  a  property  of  the  space  surrounding  the  earth — a  precession  of  the 
inertial  frame  in  this  region  relative  to  the  general  inertial  frame  of  the  sidereal 

system.  If  the  earth's  rotation  could  be  accurately  measured  by  Foucault's 
pendulum  or  by  gyrostatic  experiments,  the  result  would  differ  from  the 
rotation  relative  to  the  fixed  stars  by  this  amount.  This  result  seems  to  have 

been  first  pointed  out  by  J.  A.  Schouten.  One  of  the  difficulties  most  often 

urged  against  the  relativity  theory  is  that  the  earth's  rotation  relative  to  the 
mean  of  the  fixed  stars  appears  to  be  an  absolute  quantity  determinable  by 

dynamical  experiments  on  the  earth*;  it  is  therefore  of  interest  to  find  that 

these  two  rotations  are  not  exactly  the  same,  and  the  earth's  rotation  relative 
to  the  stellar  system  (supposed  to  agree  with  the  general  inertial  frame  of  the 
universe)  cannot  be  determined  except  by  astronomical  observations. 

The  argument  of  the  relativist  is  that  the  observed  effect  on  Foucault's 
pendulum  can  be  accounted  for  indifferently  by  a  field  of  force  or  by  rotation. 

The  anti-relativist  replies  that  the  field  of  force  is  clearly  a  mathematical 
fiction,  and  the  only  possible  physical  cause  must  be  absolute  rotation.  It  is 

pointed  out  to  him  that  nothing  essential  is  gained  by  choosing  the  so-called 
non-rotating  axes,  because  in  any  case  the  main  part  of  the  field  of  force 

remains,  viz.  terrestrial  gravitation.  He  retorts  that  with  his  non-rotating 
axes  he  has  succeeded  in  making  the  field  of  force  vanish  at  infinity,  so  that 
the  residuum  is  accounted  for  as  a  local  disturbance  by  the  earth ;  whereas, 

if  axes  fixed  in  the  earth  are  admitted,  the  corresponding  fieldof  force  becomes 

larger  and  larger  as  we  recede  from  the  earth,  so  that  the  relativist  demands 
enormous  forces  in  distant  parts  for  which  no  physical  cause  can  be  assigned. 

Suppose,  however,  that  the  earth's  rotation  were  much  slower  than  it  is  now, 

*  Space,  Time  and  Gravitation,  p.  152. 
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and  that  Foucault's  experiment  had  indicated  a  rotation  of  only  — 1"*94  per 
century.  Our  two  disputants  on  the  cloud-bound  planet  would  no  doubt  carry 
on  a  long  argument  as  to  whether  this  was  essentially  an  absolute  rotation  of 

the  earth  in  space,  the  irony  of  the  situation  being  that  the  earth  all  the  while 

was  non-rotating  in  the  anti-relativist's  sense,  and  the  proposed  transformation 
to  allow  for  the  Foucault  rotation  would  actually  have  the  effect  of  introducing 
the  enormous  field  of  force  in  distant  parts  of  space  which  was  so  much  objected 

to.  When  the  origin  of  the  1"*94  has  been  traced  as  in  the  foregoing  investi- 
gation, the  anti-relativist  who  has  been  arguing  that  the  observed  effect  is 

definitely  caused  by  rotation,  must  change  his  position  and  maintain  that  it 

is  definitely  due  to  a  gravitational  perturbation  exerted  by  the  sun  on  Fou- 

cault's pendulum  ;  the  relativist  holds  to  his  view  that  the  two  causes  are  not 
distinguishable. 

45.    Solution  for  a  particle  in  a  curved  world. 

In  later  work  Einstein  has  adopted  the  more  general  equations  (37*4) 

G»v  =  agliv    (451). 

In  this  case  we  must  modify  (38*61),  etc.  by  inserting  G$rM„  on  the  right.    We 
then  obtain 

£i/'-£XV+£i/a-X7r  =  -ae*      (45-21), 

e-K(l+±r(v'-\'))-l  =  -ar*      (45*22), 
e»-K  (-  iv"  +  iX'v'  -  iv'2  -  v'Jr)  =  aev    (45*23). 

From  (45*21)  and  (45*23),  V  =  —  v ',  so  that  we  may  take  \  =  —  v.  An  additive 
constant  would  merely  amount  to  an  alteration  of  the  unit  of  time.  Equation 

(45*22)  then  becomes 
ev  (1  +  rv)  =  1  -  ccr2. 

Let  e"  =  7 ;  then  <y  +  ry  =  1  —  ar2 

which  on  integration  gives 

7=1_2m_£ara      ^^ 

The  only  change  is  the  substitution  of  this  new  value  of  y  in  (38*8). 

By  recalculating  the  few  steps  from  (39*44)  to  (39*61)  we  obtain  the 
equation  of  the  orbit 

d2u  m  la 

d&  +  U  =  h'  +  SmU      3h>U~*    (45'4>- 
The  effect  of  the  new  term  in  a  is  to  give  an  additional  motion  of  perihelion 

S^      laA6     l«a* 

</>       2  m*     2  m  (1     e)    
(4° 5)- 

At  a  place  where  7  vanishes  there  is  an  impassable  barrier,  since  any  change 
dr  corresponds  to  an  infinite  distance  ids  surveyed  by  measuring-rods.  The 
two  roots  of  the  quadratic  (45*3)  are  approximately 

r  =  2m   and   r  =  V(3/«). 
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The  first  root  would  represent  the  boundary  of  the  particle — if  a  genuine  par- 

ticle could  exist — and  give  it  the  appearance  of  impenetrability.  The  second 
barrier  is  at  a  very  great  distance  and  may  be  described  as  the  horizon  of  the 
world. 

It  is  clear  that  the  latter  barrier  (or  illusion  of  a  barrier)  cannot  be  at  a 

less  distance  than  the  most  remote  celestial  objects  observed,  say  1025  cm. 

This  makes  a  less  than  10-50  (cm.)-2.  Inserting  this  value  (in  45*5)  we  find 
that  the  additional  motion  of  perihelion  will  be  well  below  the  limit  of  obser- 

vational detection  for  all  planets  in  the  solar  system*. 

If  in  (45*3)  we  set  m  =  0,  we  abolish  the  particle  at  the  origin  and  obtain 
the  solution  for  an  entirely  empty  world 

ds2  =  -  (1  -  lar-^dr2 -  r2dd--r2  sin2  6d<f>°-  +  (1  -  Jar2)  <ft2...(45-6). 

This  will  be  further  discussed  in  Chapter  V. 

46.    Transition  to  continuous  matter. 

In  the  Newtonian  theory  of  attractions  the  potential  O  in  empty  space 
satisfies  the  equation ^0=0, 

of  which  the  elementary  solution  is  Q,  =  m\r  ;  then  by  a  well-known  procedure 
we  are  able  to  deduce  that  in  continuous  matter 

V2H  =  -47rp   (461). 

We  can  apply  the  same  principle  to  Einstein's  potentials  g^,  which  in 
empty  space  satisfy  the  equations  6rM„  =  0.  The  elementary  solution  has  been 
found,  and  it  remains  to  deduce  the  modification  of  the  equations  in  continuous 

matter.  The  logical  aspects  of  the  transition  from  discrete  particles  to  con- 
tinuous density  need  not  be  discussed  here,  since  they  are  the  same  for  both 

theories. 

When  the  square  of  m/r  is  neglected,  the  isotropic  solution  (43*3)  for  a 
particle  continually  at  rest  becomes  f 

ds-  =  -  (l  +  — )  (dx2  +  dtf  +  dz2)  +(l-  ̂ )  dP   (46-15). 

The  particle  need  not  be  at  the  origin  provided  that  r  is  the  distance  from 

the  particle  to  the  point  considered. 

Summing  the  fields  of  force  of  a  number  of  particles,  we  obtain 

ds2  =  -(l  +  2n)(dx2+dy2+dz2)  +  (l-2n)dt2      (46-2), 

*  This  could  scarcely  have  been  asserted  a  few  years  ago,  when  it  was  not  known  that  the 
stars  extended  much  beyond  1000  parsecs  distance.  A  horizon  distant  700  parsecs  corresponds  to 

a  centennial  motion  of  about  1"  in  the  earth's  perihelion,  and  greater  motion  for  the  more 
distant  planets  in  direct  proportion  to  their  periods. 

t  This  approximation  though  sufficient  for  the  present  purpose  is  not  good  enough  for  a 

disoussion  of  the  perihelion  of  Mercury.  The  term  in  7)i2/r2  in  the  coefficient  of  d&  would  have  to 
be  retained. 
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where 

fl  =  %  —  =  Newtonian  potential  at  the  point  considered. 

The  inaccuracy  in  neglecting  the  interference  of  the  fields  of  the  particles  is 

of  the  same  order  as  that  due  to  the  neglect  of  m2jr2,  if  the  number  of  particles 
is  not  unduly  large. 

Now  calculate  the  G>„  for  the  expression  (46"2).    We  have 

ow = fBm = i  <r  {Pf+Pf-t^—PfY  -(«-3> \0XpdXa      dxlidxv     dxpdxv     dx^ax,,/ 

by  (34-5).    The  non-linear  terms  are  left  out  because  they  would  involve  £1 
which  is  of  the  order  (m/r)2  already  neglected. 

The  only  terms  which  survive  are  those  in  which  the  g's  have  like  suffixes. 
Consider  the  last  three  terms  in  the  bracket ;  for  Gn  they  become 

2\9    dx2^9    dx2^9    dx2^9    dx2      9    ax2     9    dx2 

Substituting  for  the  g's  from  (46*2)  we  find  that  the  result  vanishes  (neglecting 
H2).  For  (744  the  result  vanishes  for  a  different  reason,  viz.  because  Xi  does  not 
contain  xA  (=  t).    Hence 

^  =  irp^p=|D^     as  in  (30-65)... (46-4). 
Since  time  is  not  involved  □  =  —  V2, 

Crn,  u"22,  Cr33,  (x44  =       2       \5r«>  9?&>  9^>  9**) 
=  V2H         by  (46-2). 

Hence,  making  at  this  point  the  transition  to  continuous  matter, 

On,  G22,  Gsz,  G44  =  -^7rp        by  (461)   (46"5). 
Also  G  =  g»vGliv  =  -Gu-G22-G33+Gi4 

=  Snp 

to  the  same  approximation. Consider  the  tensor  defined  by 

-SirT^^G^-^g^G   (46-6). 
We  readily  find  TM„  =  0,  except  T^  =  p, 
and  raising  the  suffixes 

2V"  =  0,  except  T44  =  p   (46-7), 

since  the  gILV  are  Galilean  to  the  order  of  approximation  required. 
Consider  the  expression 

\AJ\AJU      \AJ\by 

Po  ds    ds  ' 

where  dx^/ds  refers  to  the  motion  of  the  matter,  and  p0  is  the  proper-density 
(an  invariant).  The  matter  is  at  rest  in  the  coordinates  hitherto  used,  and 
consequently 

dxl      dx2     dx3  _  dxA 

ds  '     ds  '    ds  ds    ~    ' 
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so  that  all  components  of  the  expression  vanish,  except  the  component  fi,  v  =  4 
which  is  equal  to  p0.    Accordingly  in  these  coordinates 

*"*££   («'8>' 
since  the  density  p  in  (46*7)  is  clearly  the  proper-density. 

Now  (46'8)  is  a  tensor  equation*,  and  since  it  has  been  verified  for  one  set 

of  coordinates  it  is  true  for  all  coordinate-systems.  Equations  (46'6)  and  (46"8) 

together  give  the  extension  of  Einstein's  law  of  gravitation  for  a  region  con- 
taining continuous  matter  of  proper-density  p0  and  velocity  dx^/ds. 

The  question  remains  whether  the  neglect  of  m"  causes  any  inaccuracy  in 
these  equations.  In  passing  to  continuous  matter  we  diminish  m  for  each 

particle  indefinitely,  but  increase  the  number  of  particles  in  a  given  volume. 

To  avoid  increasing  the  number  of  particles  we  may  diminish  the  volume,  so 

that  the  formulae  (46'5)  will  be  true  for  the  limiting  case  of  a  point  inside  a 
very  small  portion  of  continuous  matter.  Will  the  addition  of  surrounding 

matter  in  large  quantities  make  any  difference  ?  This  can  contribute  nothing 

directly  to  the  tensor  (rM„,  since  so  far  as  this  surrounding  matter  is  concerned 

the  point  is  in  empty  space  ;  but  Einstein's  equations  are  non-linear  and  we 
must  consider  the  possible  cross-terms. 

Draw  a  small  sphere  surrounding  the  point  P  which  is  being  considered. 

Let  g^  =  8^  +  hn„  4-  h'nV)  where  SM„  represents  the  Galilean  values,  and  /*M„  and 

h'^  represent  the  fields  of  force  contributed  independently  by  the  matter  in- 
ternal to  and  external  to  the  sphere.  By  §  36  we  can  choose  coordinates  such 

that  at  P  h'^v  and  its  first  derivatives  vanish ;  and  by  the  symmetry  of  the 
sphere  the  first  derivatives  of  AM„  vanish,  whilst  h^  itself  tends  to  zero  for  an 

infinitely  small  sphere.    Hence  the  cross-terms  which  are  of  the  form 

92AM„      dtiCT  9AM„  ,    ,      d"ti 'M„ 
dxKdxJ     dxK   dx0  '  "T  dxKdx0 

will  all  vanish  at  P.  Accordingly  with  these  limitations  there  are  no  cross- 

terms,  and  the  sum  of  the  two  solutions  AM„  and  A.'M„  is  also  a  solution  of  the 

accurate  equations.  Hence  the  values  (46"5)  remain  true.  It  will  be  seen  that 
the  limitation  is  that  the  coordinates  must  be  "  natural  coordinates  "  at  the 

point  P.  We  have  already  paid  heed  to  this  in  taking  p  to  be  the  proper- 
density. 

We  have  assumed  that  the  matter  at  P  is  not  accelerated  with  respect  to 

these  natural  axes  at  P.  (The  original  particles  had  to  be  continually  at  rest, 

otherwise  the  solution  (46' 15)  does  not  apply.)  If  it  were  accelerated  there 
would  have  to  be  a  stress  causing  the  acceleration.  We  shall  find  later  that 

a  stress  contributes  additional  terms  to  the  G>„.  The  formulae  (465)  apply 

only  strictly  when  there  is  no  stress  and  the  continuous  medium  is  specified 

by  one  variable  only,  viz.  the  density. 

*  When  an  equation  is  stated  to  be  a  tensor  equation,  the  reader  is  expected  to  verify  that  the 
covariaut  dimensions  of  both  sides  are  the  same. 
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The  reader  may  feel  that  there  is  still  some  doubt  as  to  the  rigour  of  this 

justification  of  the  neglect  of  m2*.  Lest  he  attach  too  great  importance  to  the 
matter,  we  may  state  at  once  that  the  subsequent  developments  will  not  be 
based  on  this  investigation.  In  the  next  chapter  we  shall  arrive  at  the  same 

formulae  by  a  different  line  of  argument,  and  proceed  in  the  reverse  direction 
from  the  laws  of  continuous  matter  to  the  particular  case  of  an  isolated 

particle. 

The  equation  (46*2)  is  a  useful  expression  for  the  gravitational  field  due 
to  a  static  distribution  of  mass.  It  is  only  a  first  approximation  correct  to  the 

order  m/r,  but  no  second  approximation  exists  except  in  the  case  of  a  solitary 
particle.  This  is  because  when  more  than  one  particle  is  present  accelerations 

necessarily  occur,  so  that  there  cannot  be  an  exact  solution  of  Einstein's 
equations  corresponding  to  a  number  of  particles  continually  at  rest.  It  follows 

that  any  constraint  which  could  keep  them  at  rest  must  necessarily  be  of  such 
a  nature  as  to  contribute  a  gravitational  field  on  its  own  account. 

It  will  be  useful  to  give  the  values  of  G>„—  ̂ g^vG  corresponding  to  the 

symmetrical  formula  for  the  interval  (38'2).  By  varying  X  and  v  this  can  repre- 
sent any  distribution  of  continuous  matter  with  spherical  symmetry.   We  have 

Q  =  -e~x  (v"  -  J\V  +  \v">  +  2  0'  -  V)/r  +  2  (1  -  e*)/r2) 

Gu-ynG  =  -v'/r-(l-e^ 

Gw  -  \g* G  =  -  r*e~*  (\v"  - |\V  +  ij/2  +  \  (V  -  \')/r) 

GS3  -  y33  G  =  -r*  sin2  0er*  (\v"  -  \  W  +  \  v'*  +  \{v'  -  \')/r) 

&44  -  i#44  G  =     «""*(-  V/r  +  (1  -  e*)/r2) 

(46-9). 

47.    Experiment  and  deductive  theory. 

So  far  as  I  am  aware,  the  following  is  a  complete  list  of  the  postulates 
which  have  been  introduced  into  our  mathematical  theory  up  to  the  present 
stage : 

1.  The  fundamental  hypothesis  of  §  1. 

2.  The  interval  depends  on  a  quadratic  function  of  four  coordinate- 
differences  (§  2). 

3.  The  path  of  a  freely  moving  particle  is  in  all  circumstances  a  geodesic 

(S  15> 
4.  The  track  of  a  light-wave  is  a  geodesic  with  ds  =  0  (§  15). 
5.  The  law  of  gravitation  for  empty  space  is  G>„  =  0,  or  more  probably 

GnV  —  Xg^v,  where  A.  is  a  very  small  constant  (§  37). 

*  To  illustrate  the  difficulty,  what  exactly  does  Po  mean,  assuming  that  it  is  not  defined  by 
(46-6)  and  (46-7)  ?  If  the  particles  do  not  interfere  with  each  other's  fields,  p0  is  2m  per  unit 
volume ;  but  if  we  take  account  of  the  interference,  m  is  undefined — it  is  the  constant  of  integra- 

tion of  an  equation  which  does  not  apply.  Mathematically,  we  cannot  say  what  m  would  have 
been  if  the  other  particles  had  been  removed  ;  the  question  is  nonsensical.  Physically  we  could 
no  doubt  say  what  would  have  been  the  masses  of  the  atoms  if  widely  separated  from  one  another, 
and  compare  them  with  the  gravitational  power  of  the  atoms  under  actual  conditions ;  but  that 
involves  laws  of  atomic  structure  which  are  quite  outside  the  scope  of  the  argument. 
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No.  4  includes  the  identification  of  the  velocity  of  light  with  the  funda- 
mental velocity,  which  was  originally  introduced  as  a  separate  postulate  in  §  6. 

In  the  mathematical  theory  we  have  two  objects  before  us — to  examine 
how  we  may  test  the  truth  of  these  postulates,  and  to  discover  how  the  laws 
which  they  express  originate  in  the  structure  of  the  world.  We  cannot  neglect 
either  of  these  aims  ;  and  perhaps  an  ideal  logical  discussion  would  be  divided 

into  two  parts,  the  one  showing  the  gradual  ascent  from  experimental  evidence 

to  the  finally  adopted  specification  of  the  structure  of  the  world,  the  other 

starting  with  this  specification  and  deducing  all  observational  phenomena. 

The  latter  part  is  specially  attractive  to  the  mathematician  for  the  proof  may 

be  made  rigorous ;  whereas  at  each  stage  in  the  ascent  some  new  inference  or 

generalisation  is  introduced  which,  however  plausible,  can  scarcely  be  con- 
sidered incontrovertible.  We  can  show  that  a  certain  structure  will  explain 

all  the  phenomena;  we  cannot  show  that  nothing  else  will. 

We  may  put  to  the  experiments  three  questions  in  crescendo.  Do  they 

verify  ?  Do  they  suggest  ?  Do  they  (within  certain  limitations)  compel  the 

laws  we  adopt  ?  It  is  when  the  last  question  is  put  that  the  difficulty  arises 

for  there  are  always  limitations  which  will  embarrass  the  mathematician  who 

wishes  to  keep  strictly  to  rigorous  inference.  What,  for  example,  does  experi- 
ment enable  us  to  assert  with  regard  to  the  gravitational  field  of  a  particle 

(the  other  four  postulates  being  granted)  ?  Firstly,  we  are  probably  justified 

in  assuming  that  the  interval  can  be  expressed  in  the  form  (38*2),  and  experi- 
ment shows  that  A.  and  v  tend  to  zero  at  great  distances.  Provided  that  e*  and 

ev  are  simple  functions  it  will  be  possible  to  expand  the  coefficients  in  the  form 

Now  reference  to  §§  39,  40,  41  enables  us  to  decide  the  following  points : 

(1)  The  Newtonian  law  of  gravitation  shows  that  &i  =  —  2m. 

(2)  The  observed  deflection  of  light  then  shows  that  a,  =  —  2m. 

(3)  The  motion  of  perihelion  of  Mercury  then  shows  that  b.,  =  0. 

The  last  two  coefficients  are  not  determined  experimentally  with  any  high 

accuracy ;  and  we  have  no  experimental  knowledge  of  the  higher  coefficients. 

If  the  higher  coefficients  are  zero  we  can  proceed  to  deduce  that  this  field 
satisfies  (rM„  =  0. 

If  small  concessions  are  made,  the  case  for  the  law  6rM„  =  0  can  be 

strengthened.  Thus  if  only  one  linear  constant  m  is  involved  in  the  specifi- 
cation of  the  field,  6,  must  contain  ra3,  and  the  corresponding  term  is  of  order 

(m/r)z,  an  extremely  small  quantity.  Whatever  the  higher  coefficients  may 
be,  G>„  will  then  vanish  to  a  very  high  order  of  approximation. 

Turning  to  the  other  object  of  our  inquiry,  we  have  yet  to  explain  how 

these  five  laws  originate  in  the  structure  of  the  world.  In  the  next  chapter 

we  shall  be  concerned  mainly  with  Nos.  3  and  5,  which  are  not  independent 
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of  one  another.  They  will  be  replaced  by  a  broader  principle  which  contains 
them  both  and  is  of  a  more  axiomatic  character.  No.  4  will  be  traced  to  its 

origin  in  the  electromagnetic  theory  of  Chapter  VI.  Finally  a  synthesis  of 
these  together  with  Nos.  1  and  2  will  be  attempted  in  the  closing  chapter. 

The  following  forward  references  will  enable  the  reader  to  trace  exactly 
what  becomes  of  these  postulates  in  the  subsequent  advance  towards  more 

primitive  conceptions : 
Nos.  1  and  2  are  not  further  considered  until  §  97. 

No.  3  is  obtained  directly  from  the  law  of  gravitation  in  §  56. 

No.  4  is  obtained  from  the  electromagnetic  equations  in  §  74.  These  are 

traced  to  their  origin  in  §  96. 
No.  5  is  obtained  from  the  principle  of  identification  in  §  54,  and  more 

completely  from  the  principle  of  measurement  in  §  66.  The  possibility  of 
alternative  laws  is  discussed  in  §  62. 

In  the  last  century  the  ideal  explanation  of  the  phenomena  of  nature  con- 
sisted in  the  construction  of  a  mechanical  model,  which  would  act  in  the  way 

observed.     Whatever  may  be  the  practical  helpfulness  of  a  model,  it  is  no 

longer  recognised  as  contributing  in  any  way  to  an  ultimate  explanation.    A 
little  later,  the  standpoint  was  reached  that  on  carrying  the  analysis  as  far  as 

possible  we  must  ultimately  come  to  a  set  of  differential  equations  of  which 

further  explanation  is  impossible.  We  can  then  trace  the  modus  operandi,  but 

as  regards  ultimate  causes  we  have  to  confess  that  "things  happen  so,  because 

the  world  was  made  in  that  way."    But  in  the  kinetic  theory  of  gases  and  in 
thermodynamics  we  have  laws  which  can  be  explained  much  more  satisfactorily. 

The  principal  laws  of  gases  hold,  not  because  a  gas  is  made  "  that  way,"  but 
because  it  is  made  "just  anyhow."    This  is  perhaps  not  to  be  taken  quite 
literally ;  but  if  we  could  see  that  there  was  the  same  inevitability  in  Max- 

well's laws  and  in  the  law  of  gravitation  that  there  is  in  the  laws  of  gases,  we 
should  have  reached  an  explanation  far  more  complete  than  an  ultimate  arbi- 

trary differential  equation.    This  suggests  striving  for  an  ideal — to  show,  not 
that  the  laws  of  nature  come  from  a  special  construction  of  the  ultimate  basis 

of  everything,  but  that  the  same  laws  of  nature  would  prevail  for  the  widest 

possible  variety  of  structure  of  that  basis.    The  complete  ideal  is  probably 

unattainable  and  certainly  unattained ;  nevertheless  we  shall  be  influenced 

by  it  in  our  discussion,  and  it  appears  that  considerable   progress  in  this 
direction  is  possible. 

\ 



CHAPTER  IV 

RELATIVITY  MECHANICS 

48.    The  antisymmetrical  tensor  of  the  fourth  rank. 

A  tensor  A^v  is  said  to  be  antisymmetrical  if 

■A.  yfJi     =  -*1/1K- 

It  follows  that  Au  =  -  Au,  so  that  An,  A^_,  A^,  Au  must  all  be  zero. 

Consider  a  tensor  of  the  fourth  rank  EaPyS  which  is  antisymmetrical  for 
all  pairs  of  suffixes.  Any  component  with  two  suffixes  alike  must  be  zero, 

since  by  the  rule  of  antisymmetry  Eafiu  =  —  Ea?n.  In  the  surviving  com- 
ponents, a,  (3,  7,  8,  being  all  different,  must  stand  for  the  numbers  1,  2,  3,  4 

in  arbitrary  order.  We  can  pass  from  any  of  these  components  to  E1-*4  by  a 
series  of  interchanges  of  the  suffixes  in  pairs,  and  each  interchange  merely 

reverses  the  sign.    Writing  E  for  E1234,  all  the  256  components  have  one  or 
other  of  the  values 

+  E,     0,     -E. 

We  shall  write  E^y&  =  E.6aPyS    (48-1), 
where 

eaay&  =      0,  when  the  suffixes  are  not  all  different, 

=  +  1,  when  they  can  be  brought  to  the  order  1,  2,  3,  4  by  an  even 
number  of  interchanges, 

=  —  1,  when  an  odd  number  of  interchanges  is  needed. 

It  will  appear  later  that  E  is  not  an  invariant ;  consequently  €afiyS  is  not 
a  tensor. 

The  coefficient  eaj3YS  is  particularly  useful  for  dealing  with  determinants. 

If  j  k^  |  denotes  the  determinant  formed  with  the  elements  k^  (which  need 

not  form  a  tensor),  we  have 

4 !  x  |  k^ |  =  ea.378 e£<r,e katk^kynk&6      (48-2), 
because  the  terms  of  the  determinant  are  obtained  by  selecting  four  elements, 

one  from  each  row  (a,  j3,  y,  8,  all  different)  and  also  from  each  column  (e,  £  rj,  6, 

all  different)  and  affixing  the  +  or  —  sign  to  the  product  according  as  the 
order  of  the  columns  is  brought  into  the  order  of  the  rows  by  an  even  or  odd 

number  of  interchanges.  The  factor  4!  appears  because  every  possible  per- 
mutation of  the  same  four  elements  is  included  separately  in  the  summation 

on  the  right. 

It  is  possible  by  corresponding  formulae  to  define  and  manipulate  deter- 
minants in  three  dimensions  (with  64  elements  arranged  in  a  cube)  or  in 

four  dimensions. 

Note  that  ea/JyS  e^s  =  4 '    (48"31). 
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The  determinants  with  which  we  are  most  concerned  are  the  fundamental 

determinant  g  and  the  Jacobian  of  a  transformation 

0  \%i  ,    0C2  ,   Xs  ,   #4  ) 

By  (48-2) 

d(x1}  x2,  x3,  Xi) 

4>lg=€^ySeeiri0gaeg^9yr,9sB       (48-32), 

dxt'  dx(  dxr,'  dxe' .(48-33). dxa  dxp  dxy  dxs 

To  illustrate  the  manipulations  we  shall  prove  that* 

9  =  J29- By  (48-32)  and  (48-33) 

,  dxj  dx$  dxo'  dxj 
(4  !)*  j*g  =  €afiy&  eeive  gaegpigyngse.  ^  c*,w  -^-  ̂ -  ̂   ̂  

dx^  dxx  dxj^  ox^  C48'41) 

■^^  dxp  dxa  dxr  dxv    V  '" 
There  are  about  280  billion  terms  on  the  right,  and  we  proceed  to  rearrange 
those  which  do  not  vanish. 

For  non-vanishing  terms  the  letters  v,  f,  o,  -nr  denote  the  same  suffixes  as 

a,  /3,  %  B,  but  (usually)  in  a  different  order.  Permute  the  four  factors  in  which 

they  occur  so  that  they  come  into  the  same  order;  the  suffixes  of  the  de- 
nominators will  then  come  into  a  new  order,  say,  i,  k,  I,  m.    Thus 

dxv'  dx£  dx0'  dxj  _  dxa'  dxp  dxy'  dxs'  f4S*42^ 
dxt  dxK  dxK   dxn       dx{  dxk  dxi  dxm 

Since  the  number  of  interchanges  of  the  denominators  is  the  same  as  the 

number  of  interchanges  of  the  numerators 

  (48-43), 
GaPyS  eiklm 

so  that  the  result  of  the  transposition  is 

ea)3yS  CikA/x dxj  dx$  dx0'  ~bxj ^vio-ar  ̂ iklm dxa'  dxp  dxy  dxs' 

it  -(48'5)- 

dxt  dxKdxK   dx„"^w"^%amdxi  dxk   dxi 
Making  a  similar  transposition  of  the  last  four  terms,  (4841)  becomes 

f±n»  t»  '_   '      '      '      '     9^a'  ?^L  QUi.  9_^i  ?^l  ?fl  ̂ ±  ̂ l K*.)J-g-gatgKgyr,g&e-dxi  
^  a^  dXm  dXr  dXg  dXt  dXu 

•  €iklm  ei>tonr  ev£o-ar  eretu  e<f>x</"°  e<f>x>(""> ' 

But  by  (23-22) 

Hence 

9 

dx^  dx€' 

9i 

dxi  dxr 

(4  !)3  J2g'  =  (4  !)2  eikhll  erstu  gir  gks  gu  gmu 
=  (4!)s<7, 

which  proves  the  theorem. 

*  A  shorter  proof  is  given  at  the  end  of  this  section. 
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Returning  to  Ea^&,  its  tensor-transformation  law  is 

J^Vkjt  _  JgafiyS  ̂M    °X"    VXa    VXr 

dxa  dxp  dxy  dxs  ' 
Whence  multiplying  by  e^v<ri.  and  using  (48"1) 

771/  j-i  uXfi    uXv    CXa    OXT 

*   ■  W  e^r  =  _>  .  e^Yl  w  _____ , 

so  that  by  (48-31)  and  (48-33) 

E'  =  JE     (48-6). 
Thus  E  is  not  an  invariant  for  transformations  of  coordinates. 

Again  i_W  E^e  gae  g^gyr,  gse 
is  seen  by  inspection  to  be  an  invariant.    But  this  is  equal  to 

E-ea.fiy?>  ee^0  gae  g^  gyn  g&0 

=  4>\E*g. 

Hence  E2g  is  an  invariant   (48'65). 

Accordingly  E2g  =  E'2g'  =  (EJ)*g',     by  (48'6) 

giving  another  proof  that  g  — ■  J-g       v   (48-7). 

Corollary.    If  a  is  the  determinant  formed  from  the  components  „M„  of 

any  co variant  tensor,  E2a  is  an  invariant  and 

„_J8„'      (48-8). 

49.    Element  of  volume.    Tensor-density. 

In  §  32  we  found  that  the  surface-element  corresponding  to  the  parallelo- 
gram contained  by  two  displacements,  81xfi,  82x(l,  is  the  antisymmetrical  tensor 

„„>*  = 

Similarly  we  define  the  volume-element  (four-dimensional)  corresponding  to 

the  hyperparallelopiped  contained  by  four  displacements,  8^,  82xfl,  83#M,  8^, 
as  the  tensor 

dV^r==     8,^,     8,xv,     8,xa,     8xxT  !       (49-1). 
O^Xfly  0<^XVy  OoXfJy  O  nX  ̂   j 

O^Xft,      o3x„,      o%xc,      V3XT 

OiXfL,        OiXy,        04#-,        O^Xj     i 

It  will  be  seen  that  the  determinant  is  an  antisymmetrical  tensor  of  the  fourth 

rank,  and  its  256  components  accordingly  have  one  or  other  of  the  three  values 

+  dV,    0,    -dV, 

where  „7=  +  dV12S4.    It  follows  from  (48-65)  that  (dVfg  is  an  invariant,  bo 
that 

V—  g .  d V  is  an  invariant    (49-2). 
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Since  the  sign  of  dV1234  is  associated  with  some  particular  cycle  of 
enumeration  of  the  edges  of  the  parallelopiped,  which  is  not  usually  of  any 

importance,  the  single  positive  quantity  dV  is  usually  taken  to  represent  the 

volume-element  fully.  Summing  a  number  of  infinitesimal  volume-elements, 
we  have 

1 1 1 1  V  —  g .  d  V  is  an  invariant   (49'3), 

the  integral  being  taken  over  any  region  defined  independently  of  the 
coordinates. 

When  the  quadruple  integral  is  regarded  as  the  limit  of  a  sum,  the  infini- 
tesimal parallelopipeds  may  be  taken  of  any  shape  and  orientation ;  but  for 

analytical  integration  we  choose  them  to  be  coincident  with  meshes  of  the 

coordinate-system  that  is  being  used,  viz. 

Sj^  =  (dxx,  0,  0,  0) ;  82w,i  =  (0,  dx2,  0,  0) ;  etc. 

Then  (49'1)  reduces  to  a  single  diagonal 
(Jj  V   ̂ —  (X00\  CLJl/q  (jjOCq  (X/0C±  ■ 

We  write  dj  for  the  volume-element  when  chosen  in  this  way,  so  that 

dr  =  dxxdx2dxzdxx. 

It  is  not  usually  necessary  to  discriminate  between  dr  and  the  more 

general  expression  dV;  and  we  shall  usually  regard  V  —  g  .dr  as  an  invariant. 

Strictly  speaking  we  mean  that  V  —g  .dr  behaves  as  an  invariant  in  volume- 

integration  ;  whereas  V  —  g .  dV  is  intrinsically  invariant. 

For  Galilean  coordinates  x,  y,  z,  t,  we  have  V  —  g=  1,  so  that 

V  -  cfdr  =  dxdydzdt      (49'41 ). 

Further  if  we  take  an  observer  at  rest  in  this  Galilean  system,  dxdydz  is  his 

element  of  proper- volume  (three-dimensional)  dW,  and  dt  is  his  proper-time 
ds.    Hence 

\/^dr  =  dWds      (49-42). 

By  (49-41)  we  see  that  V  —  gdr  is  the  volume  in  natural  measure  of  the 
four-dimensional  element.  This  natural  or  invariant  volume  is  a  physical 

conception — the  result  of  physical  measures  made  with  unconstrained  scales ; 
it  may  be  contrasted  with  the  geometrical  volume  dV  or  dr,  which  expresses 

the  number  of  unit  meshes  contained  in  the  region. 

Let  T  be  a  scalar,  i.e.  an  invariant  function  of  position;  then,  since 

T  V  —  gdV  is  an  invariant, 

I  T "J  -  gdr  is  an  invariant 

for  any  absolutely  defined  four-dimensional  region.    Each  unit  mesh  (whose 

edges  dx1}  dx2,  dxs,  dx4  are  unity)  contributes  the  amount  T^J—g  to  this 
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invariant.     Accordingly  we    call    T^  —  g  the    scalar-density*   or  invariant- 
density. 

A  nearly  similar  result  is  obtained  for  tensors.    The  integral 

flW-^r 

over  an  absolutely  defined  region  is  not  a  tensor;  because,  although  it  is  the 

sum  of  a  number  of  tensors,  these  tensors  are  not  located  at  the  same  point 

and  cannot  be  combined  (§  33).  But  in  the  limit  as  the  region  is  made 

infinitely  small  its  transformation  law  approaches  more  and  more  nearly  that 

of  a  single  tensor.  Thus  T**v  V—  g  is  a  tensor -density,  representing  the  amount 
per  unit  mesh  of  a  tensor  in  the  infinitesimal  region  round  the  point. 

It  is  usual  to  represent  the  tensor-density  corresponding  to  any  tensor  by 
the  corresponding  German  letter;  thus 

3>*  =  T**  >J^g ;   %  =  T*J-g    (49-5). 

By  (48-1)  @*r«  =  E^y&  V-#  =  E  V^ .  eaf3y&, 

and  since  E  \l '  —  g  is  an  invariant  it  follows  that  ea/3y5  is  a  tensor-density. 
Physical  quantities  are  of  two  main  kinds,  e.g. 

Field  of  acceleration  =  intensity  of  some  condition  at  a  point, 

Momentum  =  quantity  of  something  in  a  volume. 

The  latter  kind  are  naturally  expressed  as  "so  much  per  unit  mesh."  Hence 
intensity  is  naturally  described  by  a  tensor,  and  quantity  by  a  tensor-density. 

We  shall  find  V  —  g  continually  appearing  in  our  formulae ;  that  is  an  indica- 

tion that  the  physical  quantities  concerned  are  strictly  tensor-densities  rather 
than  tensors.  In  the  general  theory  tensor-densities  are  at  least  as  important 
as  tensors. 

We  can  only  speak  of  the  amount  of  momentum  in  a  large  volume  when 
a  definite  system  of  coordinates  has  been  fixed.  The  total  momentum  is  the 
sum  of  the  momenta  in  different  elements  of  volume ;  and  for  each  element 

there  will  be  different  coefficients  of  transformation,  when  a  change  of  coordi- 
nates is  made.  The  only  case  in  which  we  can  state  the  amount  of  something 

in  a  large  region  without  fixing  a  special  system  of  coordinates  is  when  we 

are  dealing  with  an  invariant ;  e.g.  the  amount  of  "  Action  "  in  a  large  region 
is  independent  of  the  coordinates.  In  short,  tensor-analysis  (except  in  the 
degenerate  case  of  invariants)  deals  with  things  located  at  a  point  and  not 

spread  over  a  large  region;  that  is  why  we  usually  have  to  use  densities 
instead  of  quantities. 

Alternatively  we  can  express  a  physical  quantity  of  the  second  kind  as 

"so  much  per  unit  natural  volume  (V  —  gdr)";  it  is  then  represented  by  a 

*  I  have  usually  avoided  the  superfluous  word  "scalar,'-  which  is  less  expressive  than    its 
synonym  "invariant."    But  it  is  convenient  here  in  order  to  avoid  confusion  between  the  density 
of  an  invariant  and  a  density  which  is  invariant.    The  latter,  p0,  has  hitherto  been  called  tin 

invariant  density  (without  the  hyphen). 
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tensor.  From  the  physical  point  of  view  it  is  perhaps  as  rational  to  express 

it  in  this  way,  as  to  express  it  by  a  tensor-density  "  so  much  per  unit  mesh 

{(It)."  But  analytically  this  is  a  somewhat  hybrid  procedure,  because  we  seem 
to  be  employing  simultaneously  two  systems  of  coordinates,  the  one  openly 

for  measuring  the  physical  quantity,  the  other  (a  natural  system)  implicitly 
for  measuring  the  volume  containing  it.  It  cannot  be  considered  wrong  in  a 

physical  sense  to  represent  quantities  of  the  second  kind  by  tensors ;  but  the 

analysis  exposes  our  sub-conscious  reference  to  V  —  g  dr,  by  the  repeated 

appearance  of  V  -  g  in  the  formulae. 
In  any  kind  of  space-time  it  is  possible  to  choose  coordinates  such  that 

V— ^  =  1  everywhere;  for  if  three  of  the  systems  of  partitions  have  been 
drawn  arbitrarily,  the  fourth  can  be  drawn  so  as  to  intercept  meshes  all  of 

equal  natural  volume.  In  such  coordinates  tensors  and  tensor-densities  become 

equivalent,  and  the  algebra  may  be  simplified ;  but  although  this  simplifica- 
tion does  not  involve  any  loss  of  generality,  it  is  liable  to  obscure  the  deeper 

significance  of  the  theory,  and  it  is  not  usually  desirable  to  adopt  it. 

50.    The  problem  of  the  rotating  disc. 

We  may  consider  at  this  point  a  problem  of  some  historic  interest — 
A  disc  made  of  homogeneous  incompressible  material  is  caused  to  rotate 

with  angular  velocity  co ;  to  find  the  alteration  in  length  of  the  radius. 

The  old  paradox  associated  with  this  problem — that  the  circumference 
moving  longitudinally  might  be  expected  to  contract,  whilst  the  radius  moving 

transversely  is  unaltered — no  longer  troubles  us*.  But  the  general  theory  of 
relativity  gives  a  quantitative  answer  to  the  problem,  which  was  first  obtained 

by  Lorentz  by  a  method  different  from  that  given  here-f\ 
We  must  first  have  a  clear  understanding  of  what  is  meant  by  the  word 

incompressible.  Let  us  isolate  an  element  of  the  rotating  disc,  and  refer  it  to 

axes  with  respect  to  which  it  has  no  velocity  or  acceleration  (proper-measure) ; 
then  except  for  the  fact  that  it  is  under  stress  due  to  the  cohesive  forces  of 

surrounding  matter,  it  is  relatively  in  the  same  state  as  an  element  of  the 

non-rotating  disc  referred  to  fixed  axes.  Now  the  meaning  of  incompressible 

is  that  no  stress-system  can  make  any  difference  in  the  closeness  of  packing 

of  the  molecules ;  hence  the  particle-density  a  (referred  to  proper-measure) 
is  the  same  as  for  an  element  of  the  non-rotating  disc.  But  the  particle- 

density  a'  referred  to  axes  fixed  in  space  may  be  different. 
We  might  write  down  at  once  by  (14*1) 

</  =  o-(l-.ft)2r2)-^ 

since  wr  is  the  velocity  of  the  element.    This  would  in  fact  give  the  right 

result.    But  in  §  14  acceleration  was  not  taken  into  account  and  we  ought  to 

*  Space,  Time  and  Gravitation,  p.  75.  t  Nature,  vol.  106,  p.  795. 
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proceed  more  rigorously.    We  use  the  accented  coordinates  of  §  15  for  our 

rotating  system,  and  easily  calculate  from  (15"4)  that 

and  since  x-[,  x2',  x3'  are  constant  for  an  element  of  the  disc,  the  proper-time 
ds  =  V(l  -  co2  {x*  +  x2'2))  dxl. 

If  dW  is  the  proper- volume  of  the  element,  by  (49-42) 

d  Wds  =  V  —  g' .  dx(dx2dx3dxl. 

Hence  d  W = (1  -  «a  (xx'2  +  x2'2) ) "  *  dx^dx^dx3 

=  {l-to2r'2)-'>rdr'dd'dx.;. 

If  the  thickness  of  the  disc  is  8x3  =  £>,  and  its  boundary  is  given  by  r'  =  a', 
the  total  number  of  particles  in  the  disc  will  be 

N  =  |  o- d  TF  =  27TO-6  / "  ( 1  -  to2r'2)  ~  *  rW. 

Since  this  number  is  unaltered  by  the  rotation,  a'  must  be  a  function  of  o> 
such  that raf 

I     (1  —  w2/2)  ~  ̂  ?*'dr'  =  const., 
Jo 

or  — -(1  —  J(l  —  co2a'2))  =  const. 

CO*
 

Expanding  the  square-root,  this  gives  approximately 

±a2(l+l<o2a'2)  =  const., 
so  that  if  a  is  the  radius  of  the  disc  at  rest 

o'(l  +  io>Va)  =  a. 
Hence  to  the  same  approximation 

a  =a(\  —  I  co2  a2). 

Note  that  a'  is  the  radius  of  the  rotating  disc  according  to  measurement  with 
fixed  scales,  since  the  rotating  and  non-rotating  coordinates  have  been  con- 

nected by  the  elementary  transformation  (15'3). 
We  see  that  the  contraction  is  one  quarter  of  that  predicted  by  a  crude 

application  of  the  FitzGerald  formula  to  the  circumference. 

51.   The  divergence  of  a  tensor. 

In  the  elementary  theory  of  vectors  the  divergence 

dX     dY     d_Z 

dx      dy      dz 

is  important;  we  can  to  some  extent  grasp  its  geometrical  significance.  In 
our  general  notation,  this  expression  becomes 

dxp  
' 
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But  evidently  a  more  fundamental  operation  is  to  take  the  co variant  deriva- 
tives which  will  give  an  invariant 

We  therefore  define  the  divergence  of  a  tensor  as  its  contracted  covariant 
derivative. 

dA* 
By  (29-4

)  
(^)„=

^-+{e
^U< 

=  W^A'-T-j^-9  by(3o'4) 

-^ku"/=?>   (51'U)- 
since  e  may  be  replaced  by  /x.    In  terms  of  tensor-density  this  may  be  written 

A:v'^=®:=irj^   (5112). 

The  divergence  of  A^  is  by  (30*2) 

{Al)v=^Al+{av,v}Al-{H,v>a)Al 

by  the  same  reduction  as  before.    The  last  term  gives 

2  V  dxv       dx,,.       dxp  J 

When  A^v  is  a  symmetrical  tensor,  two  of  the  terms  in  the  bracket  cancel 

by  interchange  of  j3  and  v,  and  we  are  left  with  —  -  ̂-  APv . 

2  oXp 

Hence  for  symmetrical  tensors 

or,by(35-2),  (^),=  ~  A  (^  -J~g)  +  \  %£j*      (5132). 
For  antisymmetrical  tensors,  it  is  easier  to  use  the  contravariant  associate, 

(A*v)v  =  r—  il**"  +  {o»/,  v}  ̂L'1"  +  {ow,  /i}  J.a"      (51-41). 

The  last  term  vanishes  owing  to  the  antisymmetry.    Hence 

(A^  =  ̂ =^(A'lV"/-~^      (51'42)- 
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Introducing  tensor-densities  our  results  become 

81^  =  J-  §(;  -  pi«3  dl$  (symmetrical  tensors)  ...(51-51), 

Sir  =  ~—  81***  (antisymmetrical  tensors)  ...(51-52). 

52.    The  four  identities. 

We  shall  now  prove  the  fundamental  theorem  of  mechanics — 

The  divergence  of G1^  —  | g^G  is  identically  zero     (52). 
In  three  dimensions  the  vanishing  of  the  divergence  is  the  condition  of 

continuity  of  flux,  e.g.  in  hydrodynamics  du/dx  +  dv/dy  +  dw/dz  =  0.  Adding  a 

time-coordinate,  this  becomes  the  condition  of  conservation  or  permanence,  as 
will  be  shown  in  detail  later.  It  will  be  realised  how  important  for  a  theory 

of  the  material  world  is  the  discovery  of  a  world-tensor  ivhich  is  inherently 
permanent. 

I  think  it  should  be  possible  to  prove  (52)  by  geometrical  reasoning  in 
continuation  of  the  ideas  of  §  33.  But  I  have  not  been  able  to  construct  a 

geometrical  proof  and  must  content  myself  with  a  clumsy  analytical  veri- 
fication. 

By  the  rules  of  covariant  differentiation 

{gV &)»  ~ g^G/da.'*  =  dGjdxp. 
Thus  the  theorem  reduces  to 

&*>=¥£   t52-1)- 2  a* 
M 

For  fu,  =  1,  2,  3,  4,  these  are  the  four  identities  referred  to  in  §  37.    By  (51'32) 

1       3     dg"? 

and  since  G  =  ga?  Ga^ 
1  dG      .  AB  BGaS  ̂   d$# 

Hence,  subtracting,  we  have  to  prove  that 

™<<^>  =  ̂    («** 
Since  (52)  is  a  tensor  relation  it  is  sufficient  to  show  that  it  holds  for  a  special 

coordinate-system;  only  we  must  be  careful  that  our  special  choice  of  coordi- 
nate-system does  not  limit  the  kind  of  space-time  and  so  spoil  the  generality 

of  the  proof.  It  has  been  shown  in  §  36  that  in  any  kind  of  space-time,  co- 
ordinates can  be  chosen  so  that  all  the  first  derivatives  dg^v/dx„  vanish  at  a 

particular  point ;  we  shall  therefore  lighten  the  algebra  by  taking  coordinates 
such  that  at  the  point  considered dg* 

l)J.V =  0   (52-3). 

dx0 

8—2 



116  THE  FOUR  IDENTITIES  CH.  IV 

This  condition  can,  of  course,  only  be  applied  after  all  differentiations  have 

been  performed.    Then 

7=5  r  (G»  v^} = ?h  4 frr ̂   •  *->■ 

Owing  to  (52-3)  gVTg'7?  V  —  #  can  be  taken  outside  the  differential  operator, 
giving 

v 

which  by  (34*5)  is  equal  to 

lfw±(J&L +*&!--.  l9^_^9fl\   (52.4) 
2y  dXySjdx^dXr     dxpdxo     dxpdxT      dx^dxj 

The  rest  of  i?MT<Tp  is  omitted  because  it  consists  of  products  of  two  vanishing 

factors  (3-index  symbols),  so  that  after  differentiation  by  dx„  one  vanishing 
iactor  always  remains. 

By  the  double  interchange  a  for  t,  p  for  v,  two  terms  in  (52"4)  cancel  out, 
leaving 

v^-s^^>-*^£(gfe-|g-)  •••<52;31)- Similarly 

29      dxu*9      dx"*9    dx^9    *VTap) 

3    /  d-gpa        d2gVT        d2gva        d2gpT 
9^  \9#„9#T      dxpdx„     dxpdxT      dxvdxt 

dXn\dxvdxT      dxvdx0) 

since  the  double  interchange  a  for  t,  p  for  i>,  causes  two  terms  to  become 
equal  to  the  other  two. 

Comparing  (52*51)  and  (52*52)  we  see  that  the  required  result  is  estab- 

lished for  coordinates  chosen  so  as  to  have  the  property  (52*3)  at  the  point 
considered ;  and  since  it  is  a  tensor  equation  it  must  hold  true  for  all  systems 
of  coordinates. 

53.    The  material  energy -tensor. 

Let  pQ  be  the  proper-density  of  matter,  and  let  dx^/ds  refer  to  the  motion 

of  the  matter ;  we  write,  as  in  (46*8), 

Ti">  =  Po^*p    (53*1). 
r    ds    ds 

Then  T*v  (with  the  associated  mixed  and  covariant  tensors)  is  called  the 
energy -tensor  of  the  matter. 
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For  matter  moving  with  any  velocity  relative  to  Galilean  coordinates,  the 

coordinate-density  p  is  given  by 

>-»(£)'   <««>■ 

for,  as  explained  in  (14#2),  the  FitzGerald  factor  /3  =  dt/ds  appears  twice,  once 
for  the  increase  of  mass  with  velocity  and  once  for  the  contraction  of  volume. 

Hence  in  Galilean  coordinates 

T"=?dirw    (53'3>' 
so  that  if  u,  v,  w  are  the  components  of  velocity 

T^v  =    pu- ,     pvu,     pwu,     pu         (53-4). 

puv,      pv* ,     pivv,      pv 

puw,     pvw,     piu~,     pw 
pu  ,      pv  ,      pw,      p 

In  matter  atomically  constituted,  a  volume  which  is  regarded  as  small  for 

macroscopic  treatment  contains  particles  with  widely  divergent  motions.  Thus 

the  terms  in  (53*4)  should  be  summed  for  varying  motions  of  the  particles. 
For  macroscopic  treatment  we  express  the  summation  in  the  following  way. — 
Let  (u,  v,  w)  refer  to  the  motion  of  the  centre  of  mass  of  the  element,  and 

(v,,  vlt  wx)  be  the  internal  motion  of  the  particles  relative*  to  the  centre  of 
mass.   Then  in  a  term  of  our  tensor  such  as  Sp  (u  +  wx)  (v  +  v^,  the  cross-pro- 

ducts will  vanish,  leaving  Ipuv  +  1pu1v1.    Now  'Epu1v1  represents  the  rate  of 
transfer  of  it-momentum  by  particles  crossing  a  plane  perpendicular  to  the 

y-axis,  and  is  therefore  equal  to  the  internal  stress  usually  denoted  by  p>xy 

We  have  therefore  to  add  to  (53*4)  the  tensor  formed  by  the  internal  stresses, 
bordered  by  zeroes.    The  summation  can  now  be  omitted,  p  referring  to  the 

whole   density,  and  u,  v,  iv  to  the  average  or  mass-motion  of  macroscopic 
elements.    Accordingly 

2>*=  Pxx+  pu*,    pyx  +  pvu,    p;X+pwu,     pu       (53-5). 

Pxy  +  pUV,      pyy+  pV2  ,      pzy+pWU,       pV 

pxz  +  puw,    pyz  +  pviu,    pzz  +  pw",     pw 
pu         ,  pv  pw       ,       p 

Consider  the  equations 

dT"-v 

S7  =  °   (53'6>- 
Taking  first  /i  =  4,  this  gives  by  (53"5) 

d^}+Hfl  +  dAp+k   0   (33.71), ox  ay  dz         at 

which  is  the  usual  "  equation  of  continuity  "  in  hydrodynamics. 

*  In  the  sense  of  elementary  mechanics,  i.e.  the  simple  difference  of  the  velocities. 
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For  /x=  1,  we  have 

dp™  .  <>P*y  ,  dP*z  _    _  fi(F*)  ,  3(PUV)  ,  Hpuw)     d(pu) 

dx 

+ 

dy 

+ 

dz 

-
(
 

=  —  w 
3a; 3(pu) 

dx 

du 

+ 

+ 

3y 

dp) + 

3^ 
3* 

0 
.  d(pw)      dp +     dz         dt 

du         du     du 

ox        dy        dz      ot 

Du 
.(53-72) 

by  (53-71).    DujDt  is  the  acceleration  of  the  element  of  the  fluid. 
This  is  the  well-known  equation  of  hydrodynamics  when  no  body-force  is 

acting.  (By  adopting  Galilean  coordinates  any  field  of  force  acting  on  the 
mass  of  the  fluid  has  been  removed.) 

Equations  (53'71)  and  (5372)  express  directly  the  conservation  of  mass 

and  momentum,  so  that  for  Galilean  coordinates  these  principles  are  con- 
tained in 

dT»v/dxv  =  0. 

In  fact  dT(lvldxv  represents  the  rate  of  creation  of  momentum  and  mass  in 
unit  volume.  In  classical  hydrodynamics  momentum  may  be  created  in  the 

volume  (i.e.  may  appear  in  the  volume  without  having  crossed  the  boundary) 

by  the  action  of  a  body-force  pX,  pY,  pZ;  and  these  terms  are  added  on  the 

right-hand  side  of  (53-72).  The  creation  of  mass  is  considered  impossible. 
Accordingly  the  more  general  equations  of  classical  hydrodynamics  are 

dT^ 

dxv 

=  (PX,pY,pZ,0)   (53-81). 

-Pzx-pWU, 

pu 

~PZy    ~    pWV, 

pv 

-Pzz  ~  PW2, 

pw 

-pw 

P 

In  the  special  relativity  theory  mass  is  equivalent  to  energy,  and  the  body- 
forces  by  doing  work  on  the  particles  will  also  create  mass,  so  that 

d-^  =  (pX,pY,PZ,pS)   (53-82), 
where  pS  is  the  work  done  by  the  forces  pX,  pY,  pZ.  These  older  formulae 
are  likely  to  be  only  approximate ;  and  the  exact  formulae  must  be  deduced 

by  extending  the  general  relativity  theory  to  the  case  when  fields  of  force  are 

present,  viz.  to  non-Galilean  coordinates. 

It  is  often  convenient  to  use  the  mixed  tensor  T^  in  place  of  T^v.    For 

Galilean  coordinates  we  obtain  from  (53'5)* 

Tl=     -Pxx-  pu-  ,     -pyx~  pvu,     -pzx-pivu,     pu    ...(53-91). 

-  Pxy  -    pUV  ,  -  Pyy  -    pV2    , 

~  Pxz  ~  pUW,       -  pyz  -  pVW, 

-pu       ,  -pv 

*  E.g.  T21=.9o.2r<'i  =  0-T21  +  0  +  0. 
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The  equation  equivalent  to  (53-82)  is  then 

^f  =  (-pX,-pY,-pZ,PS)   (53-92). 

That  is  to  say  dTvJdx„  is  the  rate  of  creation  of  negative  momentum  and  of 
positive  mass  or  energy  in  unit  volume. 

54.    New  derivation  of  Einstein's  law  of  gravitation. 

We  have  found  that  for  Galilean  coordinates 

dT^/dsev  =  0   (54-1). 

This  is  evidently  a  particular  case  of  the  tensor  equation 

(!>")„  =  0   (54-21). 

Or  we  may  use  the  equivalent  equation 

(T;)v  =  0    (54-22), 

which  results  from  lowering  the  suffix  p,.  In  other  words  the  divergence  of 

the  energy-tensor  vanishes. 
Taking  the  view  that  energy,  stress,  and  momentum  belong  to  the  world 

(space-time)  and  not  to  some  extraneous  substance  in  the  world,  we  must 

identify  the  energy-tensor  with  some  fundamental  tensor,  i.e.  a  tensor  be- 
longing to  the  fundamental  series  derived  from  g^v. 

The  fact  that  the  divergence  of  T^  vanishes  points  to  an  identification 

with  (G^  —  ̂ g^G)  whose  divergence  vanishes  identically  (§  52).    Accordingly 
we  set 

G;-^gvf,G  =  ~87rTv.   (54-3), 

the  factor  Sir  being  introduced  for  later  convenience  in  coordinating  the  units. 

To  pass  from  (541)  to  (54-21)  involves  an  appeal  to  the  hypothetical 

Principle  of  Equivalence ;  but  by  taking  (54-3)  as  our  fundamental  equation 
of  gravitation  (54'21)  becomes  an  identity  requiring  no  hypothetical  assump- 
tion. 

We  thus  arrive  at  the  law  of  gravitation  for  continuous  matter  (46'6) 
but  with  a  different  justification.  Appeal  is  now  made  to  a  Principle  of 

Identification.  Our  deductive  theory  starts  with  the  interval  (introduced  by 

the  fundamental  axiom  of  §  1),  from  which  the  tensor  gMV  is  immediately 

obtained.  By  pure  mathematics  we  derive  other  tensors  G>„,  B^,ap,  and  if 

necessary  more  complicated  tensors.  These  constitute  our  world-building 
material ;  and  the  aim  of  the  deductive  theory  is  to  construct  from  this  a 

world  which  functions  in  the  same  way  as  the  known  physical  world.  If  we 

succeed,  mass,  momentum,  stress,  etc.  must  be  the  vulgar  names  for  certain 

analytical  quantities  in  the  deductive  theory ;  and  it  is  this  stage  of  naming 

the  analytical  tensors  which  is  reached  in  (543).  If  the  theory  provides  a 

tensor  G^-lg^G  which  behaves  in  exactly  the  same  way  as  the  tensor 
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summarising  the  mass,  momentum  and  stress  of  matter  is  observed  to  behave, 

it  is  difficult  to  see  how  anything  more  could  be  required  of  it*. 

By  means  of  (53-91)  and  (543)  the  physical  quantities  p,  it,  v,  w,  pxx  ...pzz 
are  identified  in  terms  of  the  fundamental  tensors  of  space-time.    There  are  10 

of  these  physical  quantities  and  10  different  components  of  Gl,  —  hg^G,  so  that 
the  identification  is  just  sufficient.  It  will  be  noticed  that  this  identification 

gives  a  dynamical,  not  a  kinematical  definition  of  the  velocity  of  matter 

u,  v,  w ;  it  is  appropriate,  for  example,  to  the  case  of  a  rotating  homogeneous 

and  continuous  fly-wheel,  in  which  there  is  no  velocity  of  matter  in  the  kine- 
matical sense,  although  a  dynamical  velocity  is  indicated  by  its  gyros tatic 

properties f.  The  connection  with  the  ordinary  kinematical  velocity,  which 

determines  the  direction  of  the  world-line  of  a  particle  in  four  dimensions,  is 
followed  out  in  §  56. 

Contracting  (54"3)  by  setting  v  =  fi,  and  remembering  that  g1^  —  4,  we  have 

G  =  8ttT      (54-4), 

so  that  an  equivalent  form  of  (54*3)  is 

Gl  =  -S7r(T;-^T)   (54-5). 

When  there  is  no  material  energy-tensor  this  gives 

which  is  equivalent  to  Einstein's  law  G^  =  0  for  empty  space. 

According  to  the  new  point  of  view  Einstein's  law  of  gravitation  does  not 
impose  any  limitation  on  the  basal  structure  of  the  world.  G>„  may  vanish  or 
it  may  not.  If  it  vanishes  we  say  that  space  is  empty ;  if  it  does  not  vanish 

we  say  that  momentum  or  energy  is  present ;  and  our  practical  test  whether 

space  is  occupied  or  not — whether  momentum  and  energy  exist  there — is  the 
test  whether  G>„  exists  or  not|. 

Moreover  it  is  not  an  accident  that  it  should  be  this  particular  tensor 

which  is  capable  of  being  recognised  by  us.  It  is  because  its  divergence 
vanishes — because  it  satisfies  the  law  of  conservation — that  it  fulfils  the 

primary  condition  for  being  recognised  as  substantial.  If  we  are  to  surround 

ourselves  with  a  perceptual  world  at  all,  we  must  recognise  as  substance  that 

which  has  some  element  of  permanence.  We  may  not  be  able  to  explain  how 

the  mind  recognises  as  substantial  the  world-tensor  6r£.  —  hg^  G,  but  we  can 
see  that  it  could  not  well  recognise  anything  simpler.    There  are  no  doubt 

*  For  a  complete  theory  it  would  be  necessary  to  show  that  matter  as  now  defined  has  a 
tendency  to  aggregate  into  atoms  leaving  large  tracts  of  the  world  vacant.  The  relativity  theory 
has  not  yet  succeeded  in  finding  any  clue  to  the  phenomenon  of  atomicity. 

t  Space,  Time  and  Gravitation,  p.  194. 

X  We  are  dealing  at  present  with  mechanics  only,  so  that  we  can  scarcely  discuss  the  part 
played  by  electromagnetic  fields  (light)  in  conveying  to  us  the  impression  that  space  is  occupied 
by  something.  But  it  may  be  noticed  that  the  crucial  test  is  mechanical.  A  real  image  has  the 
optical  properties  but  not  the  mechanical  properties  of  a  solid  body. 
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minds  which  have  not  this  predisposition  to  regard  as  substantial  the  things 
which  are  permanent ;  but  we  shut  them  up  in  lunatic  asylums. 

The  invariant  T  =  g„v  2>' 
=  Po, 

since  gttvdxltdxv  =  ds'2. 

Thus  G  =  8irT=87rp0    (54-6). 

Einstein  and  de  Sitter  obtain  a  naturally  curved  world  by  taking  instead 

of  (54-3) 

G;-^;(G-2X)  =  -8ttT;    (54-71), 

where  X  is  a  constant.  Since  the  divergence  of  g^  or  of  g*v  vanishes,  the 
divergence  of  this  more  general  form  will  also  vanish,  and  the  laws  of  conser- 

vation of  mass  and  momentum  are  still  satisfied  identically.  Contracting 
(5471),  we  have 

G-4\  =  87rT  =  8irPo      (54-72). 

For  empty  space  G  =  4\,  and  T^  =  0  ;  and  thus  the  equation  reduces  to 
G>  =  XsC, 

or  G>„  =  \7M„, 

as  in  (37-4). 
When  account  is  taken  of  the  stresses  in  continuous  matter,  or  of  the 

molecular  motions  in  discontinuous  matter,  the  proper-density  of  the  matter 
requires  rather  careful  definition.  There  are  at  least  three  possible  definitions 

which  can  be  j  ustified ;  and  we  shall  denote  the  corresponding  quantities  by 

Po>   P00>   POOO- 

(1)  We  define  Ro  =  T. 

By  reference  to  (54*6)  it  will  be  seen  that  this  represents  the  sum  of  the 
densities  of  the  particles  with  different  motions,  each  particle  being  re/erred 
to  axes  with  respect  to  which  it  is  itself  at  rest. 

(2)  We  can  sum  the  densities  for  the  different  particles  referring  them 
all  to  axes  which  are  at  rest  in  the  matter  as  a  whole.  The  result  is  denoted 

by  pw.    Accord ingl y 

Poo  =  Th  referred  to  axes  at  rest  in  the  matter  as  a  whole. 

(3)  If  a  perfect  fluid  is  referred  to  axes  with  respect  to  which  it  is  at  rest, 

the  stresses  pxx,  pyy,  pzz  are  each  equal  to  the  hydrostatic  pressure  p.  The 

energy-tensor  (53'5)  accordingly  becomes 
T*v=    p  0  0  0 

0  p  0  0 
0  0  p  0 
0  0  0  poo 
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Writing  pM  =  pm  -p ,  the  pressure-terms  give  a  tensor  -g»vp.    Accordingly 

Ave  have  the  tensor  equation  applicable  to  any  coordinate-system 

*-p-%TS-irp   ("»)■ 

Thus  if  the  energy-tensor  is  analysed  into  two  terms  depending  respectively 

on  two  invariants  specifying  the  state  of  the  fluid,  we  must  take  these  in- 
variants to  be  jt)  and  p0Wl. 

The  three  quantities  are  related  by 

Po  =  Poo  -  3p  =  pooo  -  4p     (54-82). 
If  a  fluid  is  incompressible,  i.e.  if  the  closeness  of  packing  of  the  particles 

is  independent  of  p,  the  condition  must  be  that  pn  is  constant*.  Incompressi- 
bility  is  concerned  with  constancy  not  of  mass-density  but  of  particle-density, 
so  that  no  account  should  be  taken  of  increases  of  mass  of  the  particles  due 
to  motion  relative  to  the  centre  of  mass  of  the  matter  as  a  whole. 

For  a  liquid  or  solid  the  stress  does  not  arise  entirely  from  molecular 
motions,  but  is  due  mainly  to  direct  repulsive  forces  between  the  molecules  held 

in  proximity.  These  stresses  must,  of  course,  be  included  in  the  energy-tensor 
(which  would  otherwise  not  be  conserved)  just  as  the  gaseous  pressure  is 
included.  It  will  be  shown  later  that  if  these  repulsive  forces  are  Maxwellian 

electrical  forces  they  contribute  nothing  to  p0,  so  that  pQ  arises  entirely  from 
the  molecules  individually  (probably  from  the  electrons  individually)  and  is 

independent  of  the  circumstances  of  packing. 

Since  p0  is  the  most  useful  of  the  three  quantities  in  theoretical  investiga- 
tions we  shall  in  future  call  it  the  proper-density  (or  invariant  density) 

without  qualification. 

55.    The  force. 

By  (51-2)  the  equation  (T*)„  =  0  becomes 

~(T;^)={nv,a}T:   (55-1). 
V  -  g  d», 

Let  us  choose  coordinates  so  that  V  —  g  =  1 ;  then 

^Tl={f,v,a}T:   (55-2). 

In  most  applications  the  velocity  of  the  matter  is  extremely  small  com- 

pared with  the  velocity  of  light,  so  that  on  the  right  of  this  equation  T\  =  p  is 

much  larger  than  the  other  components  of  Tva.  As  a  first  approximation  we 
neglect  the  other  components,  so  that 

^={^,4}p   (55-3). 

*  Many  writers  seem  to  have  defined  incompressibility  by  the  condition  />0o  =  constant.    This 
is  surely  a  most  misleading  definition. 
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This  will  agree  with  classical  mechanics  (53'92)  if 

-X,  -Y,  -£={14,4},  {24,4},  {34,4}    (554). 

The  3-index  symbols  can  thus  be  interpreted  as  components  of  the  field 

of  force.  The  three  quoted  are  the  leading  components  which  act  proportion- 
ately to  the  mass  or  energy ;  the  others,  neglected  in  Newtonian  mechanics, 

are  evoked  by  the  momenta  and  stresses  which  form  the  remaining  com- 

ponents of  the  energy-tensor. 

The  limitation  V—  g  =  l  is  not  essential  if  we  take  account  of  the  con- 

fusion of  tensor-densities  with  tensors  referred  to  at  the  end  of  §  49.  It  will 
be  remembered  that  the  force  (X,  Y,  Z)  occurs  because  we  attribute  to  our 

mesh-system  an  abstract  Galilean  geometry  which  is  not  the  natural  geo- 
metry. Either  inadvertently  or  deliberately  we  place  ourselves  in  the  position 

of  an  observer  who  has  mistaken  his  non-Galilean  mesh-system  for  rectangular 
coordinates  and  time.  We  therefore  mistake  the  unit  mesh  for  the  unit  of 

natural  volume,  and  the  density  of  the  energy-tensor  3£  reckoned  per  unit 

mesh  is  mistaken  for  the  energy-tensor  itself  T^  reckoned  per  unit  natural 

volume.  For  this  reason  the  conservation  of  the  supposed  energy-tensor 

should  be  expressed  analytically  by  d%vJdxv=0\  and  when  a  field  of  force 
intervenes  the  equations  of  classical  hydrodynamics  should  be  written 

^%1  =  %\{-X,  -Y,  -Z,  0)      (55-51), 

the  supposed  density  p  being  really  the  "density-density"  pv7  —  g  or  %\*. 
Since  (55*1)  is  equivalent  to 

^;={F.«1^I    (55-52), 

the  result  (55*4)  follows  irrespective  of  the  value  of  V—  g. 

The  alternative  formula  (51'51)  may  be  used  to  calculate  Tv v,  giving 

s^-*3^   (S5'6)- 
Retaining  on  the  right  only  Xu,  we  have  by  comparison  with  (55*51) 

X>Y>Z=   ~2^c>-2ty>-2te       (557)- 
*  It  might  seem  preferable  to  avoid  this  confusion  by  immediately  identifying  the  energy, 

momentum  and  stress  with  the  components  of  %"  ,  instead  of  adopting  the  roundabout  procedure 

of  identifying  them  with  Tv  and  noting  that  in  practice  %"  is  inadvertently  substituted.  The 

inconvenience  is  that  we  do  not  always  attribute  abstract  Galilean  geometry  to  our  coordinate- 
system.  For  example,  if  polar  coordinates  are  used,  there  is  no  tendency  to  confuse  the  mesh 

drddd(j>  with  the  natural  volume  r2sin  6drd0d<p  ;  in  such  a  case  it  is  much  more  convenient  to 

take  T"  as  the  measure  of  the  density  of  energy,  momentum  and  stress.  It  is  when  by  our 
attitude  of  mind  we  attribute  abstract  Galilean  geometry  to  coordinates  whose  natural  geometry 

is  not  accurately  Galilean,  that  the  automatic  substitution  of  SC*  for  the  quantity  intended  to 

represent  T"  occurs. 
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Hence,  for  a  static  coordinate-system 

so  that  X,  Y,  Z  are  derivable  from  a  potential 

fl  =  — |  #44  +  const. 

Choosing  the  constant  so  that  gu  =  1  when  fl  =  0 

gu=l-2Q   (558). 

Special  cases  of  this  result  will  be  found  in  (15'4)  and  (38*8),  fl  being  the 
potential  of  the  centrifugal  force  and  of  the  Newtonian  gravitational  force 
respectively. 

Let  us  now  briefly  review  the  principal  steps  in  our  new  derivation  of  the 

laws  of  mechanics  and  gravitation.  We  concentrate  attention  on  the  world- 

tensor  T"^  defined  by 

The  question  arises  how  this  tensor  would  be  recognised  in  nature — what 
names  has  the  practical  observer  given  to  its  components  ?  We  suppose 

tentatively  that  when  Galilean  or  natural  coordinates  are  used  T\  is  recognised 

as  the  amount  of  mass  or  energy  per  unit  volume,  Tx,  T2,  Ts  as  the  negative 

momentum  per  unit  volume,  and  the  remaining  components  contain  the 

stresses  according  to  the  detailed  specifications  in  (53'91).  This  can  only  be 
tested  by  examining  whether  the  components  of  T^  do  actually  obey  the  laws 
which  mass,  momentum  and  stress  are  known  by  observation  to  obey.  For 

natural  coordinates  the  empirical  laws  are  expressed  by  dTvlx/dxv  =  0,  which  is 
satisfied  because  our  tensor  from  its  definition  has  been  proved  to  satisfy 

(TJD„  =  0  identically.  When  the  coordinates  are  not  natural,  the 'identity 
Tlv  =  0  gives  the  more  general  law 

_9_  <£„  _  1  dc/as  <£a/3 
dxv     *      2  dx,,. 

We  attribute  an  abstract  Galilean  geometry  to  these  coordinates,  and 

should  accordingly  identify  the  components  of  T^  as  before,  just  as  though 

the  coordinates  were  natural ;  but  owing  to  the  resulting  confusion  of  unit 

mesh  with  unit  natural  volume,  the  tensor-densities  %t,  %\,  %\,  %\  will  now 
be  taken  to  represent  the  negative  momentum  and  energy  per  unit  volume. 

In  accordance  with  the  definition  of  force  as  rate  of  change  of  momentum, 

the  quantity  on  the  right  will  be  recognised  as  the  (negative)  body-force 
acting  on  unit  volume,  the  three  components  of  the  force  being  given  by 

H=  1,  2,  3.  When  the  velocity  of  the  matter  is  very  small  compared  with  the 
velocity  of  light  as  in  most  ordinary  problems,  we  need  only  consider  on  the 
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right  the  component  Xi4  or  p ;  and  the  force  is  then  due  to  a  field  of  accelera- 

tion of  the  usual  type  with  components  —\dgii/dx1,  —  \dgujdx2,  —  ̂ dgM/dx3. 
The  potential  fl  of  the  field  of  acceleration  is  thus  connected  with  gu  by  the 

relation  gu  =  l  -  2f2.  When  this  approximation  is  not  sufficient  there  is  no 
simple  field  of  acceleration;  the  acceleration  of  the  matter  depends  not  only 
on  its  position  but  also  on  its  velocity  and  even  on  its  state  of  stress. 

Einstein's  law  of  gravitation  for  empty  space  G>„  =  0  follows  at  once  from  the 

above  identification  of  T"^. 

56.    Dynamics  of  a  particle. 

An  isolated  particle  is  a  narrow  tube  in  four  dimensions  containing  a  non- 

zero energy-tensor  and  surrounded  by  a  region  where  the  energy-tensor  is 

zero.    The  tube  is  the  world-line  or  track  of  the  particle  in  space-time. 

The  momentum  and  mass  of  the  particle  are  obtained  by  integrating  %* 
over  a  three-dimensional  volume ;  if  the  result  is  written  in  the  form 

-  Mu,   -  Mv,   -  Mw,  M, 

then  M  is  the  mass  (relative  to  the  coordinate  system),  and  (u,  v,  w)  is  the 

dynamical  velocity  of  the  particle,  i.e.  the  ratio  of  the  momenta  to  the  mass. 
The  kinematical  velocity  of  the  particle  is  given  by  the  direction  of  the 

i n %       cLoc       doc-  \ 

tube  in  four  dimensions,  viz.  (-r-^,    ~r-  ,    -7— J 1  along  the  tube.   For  completely 

continuous  matter  there  is  no  division  of  the  energy-tensor  into  tubes  and  the 
notion  of  kinematical  velocity  does  not  arise. 

It  does  not  seem  to  be  possible  to  deduce  without  special  assumptions  that 

the  dynamical  velocity  of  a  particle  is  equal  to  the  kinematical  velocit}\  The 
law  of  conservation  merely  shows  that  {Mil,  Mv,  Mw,  M)  is  constant  along  the 
tube  when  no  field  of  force  is  acting ;  it  does  not  show  that  the  direction  of 
this  vector  is  the  direction  of  the  tube. 

I  think  there  is  no  doubt  that  in  nature  the  dynamical  and  kinematical 

velocities  are  the  same ;  but  the  reason  for  this  must  be  sought  in  the  sym- 
metrical properties  of  the  ultimate  particles  of  matter.  If  we  assume  as  in 

§  38  that  the  particle  is  the  nucleus  of  a  symmetrical  field,  the  result  becomes 
obvious.  A  symmetrical  particle  which  is  kinematically  at  rest  cannot  have 

any  momentum  since  there  is  no  preferential  direction  in  which  the  momentum 

could  point ;  in  that  case  the  tube  is  along  the  £-axis,  and  so  also  is  the  vector 
(0,  0,  0,  M).  It  is  not  necessary  to  assume  complete  spherical  symmetry ; 

three  perpendicular  planes  of  symmetry  would  suffice.  The  ultimate  particle 

may  for  example  have  the  symmetry  of  an  anchor-ring. 

It  might  perhaps  be  considered  sufficient  to  point  out  that  a  "particle  "  in 
practical  dynamics  always  consists  of  a  large  number  of  ultimate  particles  or 

atoms,  so  that  the  symmetry  may  be  merely  a  consequence  of  haphazard 

averages.  But  we  shall  find  in  §  80,  that  the  same  difficulty  occurs  in  under- 

standing how  an  electrical  field  affects  the  direction  of  the  world-line  of  a 
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charged  particle,  and  the  two  problems  seem  to  be  precisely  analogous.  In 

the  electrical  problem  the  motions  of  the  ultimate  particles  (electrons)  have 

been  experimented  on  individually,  and  there  has  been  no  opportunity  of 

introducing  the  symmetry  by  averaging.  I  think  therefore  that  the  symmetry 

exists  in  each  particle  independently. 

It  seems  necessary  to  suppose  that  it  is  an  essential  condition  for  the 

existence  of  an  actual  particle  that  it  should  be  the  nucleus  of  a  symmetrical 

field,  and  its  world-line  must  be  so  directed  and  curved  as  to  assure  this 

symmetry.  A  satisfactory  explanation  of  this  property  will  be  reached  in  §  66. 

With  this  understanding  we  may  use  the  equation  (53-1),  involving  kine- 
matical  velocity, T»  =  Pl 

Ct'tC'14   CVJuy 

ds    ds 

•(561), 

in  place  of  (534),  involving  dynamical  velocity.  From  the  identity  T%v  =  0,  we 
have  by  (51  41) 

i(^v^)  =  _lflj;)/i}r-V^    (56-2). 

O0Cv 

Integrate  this  through  a  very  small  four-dimensional  volume.  The  left-hand 
side  can  be  integrated  once,  giving 

[[  I T*1  ̂ l^g  dx2dx3dxA  +  I  j  IT'*2  \/^~g  dx^x^x^  + . . 

=  -fJff{ctv,riT<»>.s/-gdT      (56-3). 
Suppose  that  in  this  volume  there  is  only  a  single  particle,  so  that  the 

energy-tensor  vanishes  everywhere  except  in  a  narrow  tube.  By  (561)  the 
quadruple  integral  becomes 

f  C  r  r  doc  doc        /   -  doc  docn 

since  p0  V  —  g  dr  =  p0dW .  ds  =  dm .  ds,  where  dm  is  the  proper-mass. 
On  the  left  the  triple  integrals  vanish  except  at  the  two  points  where  the 

world-line  intersects  the  boundary  of  the  region.  For  convenience  we  draw 

the  boundary  near  these  two  points  in  the  planes  dxx  —  0,  so  that  only  the  first 

of  the  four  integrals  survives.    The  left-hand  side  of  (56"3)  becomes 

Pa 

V"
 

^  ds   ds 
{JjxAj^  UtOb'X  iX/Jb 4 .(56-51), 

the  bracket  denoting  the  difference  at  the  two  ends  of  the  world-line. 
The  geometrical  volume  of  the  oblique  cylinder  cut  off  from  the  tube  by 

sections  dx^dx^x^  at  a  distance  apart  ds  measured  along  the  tube  is 
dx1 

ds ds  dx.2dx,dxA. 
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Multiplying  by  p0\/  -g  we  get  the  amount  of  p0  contained*,  which  is 

dmds.   Hence  (56'51)  reduces  to 
dxu 

ds 

The  difference  at  the  two  limits  is 

d  (     dx„\  7 

where  ds  is  now  the  length  of  track  between  the  two  limits  as  in  (56-4). 

By  (56-4)  and  (56"52)  the  equation  reduces  to 

d  (     dxA  .  dxa  dxp 

ds\m^r-m^'^w-ds    (56'6>- 
Provided  that  m  is  constant  this  gives  the  equations  of  a  geodesic  (28-5), 

showing  that  the  track  of  an  isolated  particle  is  a  geodesic.  The  constancy  of 
m  can  be  proved  formally  as  follows — 

From  (566) 

mg- ITs  ■  Is r  WJ  =  - m  [a/3'  ̂ -ds-lTsU 
—  —  &n •  dgav  dxa  dxa  dxv 

dxp   ds    ds   ds 

ds     ds   ds 

1  2  dyiiv  aXu  <xxv 
2  ds     ds    ds 

Adding  the  same  equation  with  i±  and  v  interchanged 

dxv    d  (     dx^  dx^    d  (     dxv\  dx„        dx„  dqu 

=  0 

\A/       {  '  I  >/   ii  \XJb 

ds{^-mW'm 

ttxv\   
ds  J 

By  (22-l)  this  gives  dm2/ds  =  0.    Accordingly  the  invariant  mass  of  an  isolated 
particle  remains  constant. 

The  present  proof  does  not  add  very  much  to  the  argument  in  §  17  that 

the  particle  follows  a  geodesic  because  that  is  the  only  track  which  is  abso- 
lutely defined.  Here  we  postulate  symmetrical  properties  for  the  particle 

(referred  to  proper-coordinates) ;  this  has  the  effect  that  there  is  no  means  of 
fixing  a  direction  in  which  it  could  deviate  from  a  geodesic.  For  further 

enlightenment  we  must  wait  until  Chapter  V. 

*  The  amount  of  density  in  a  four-dimensional  volume  is,  of  course,  not  the  mass  but  a 
quantity  of  dimensions  mass  x  time. 
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57.    Equality  of  gravitational  and  inertial  mass.    Gravitational 
waves. 

The  term  gravitational  mass  can  be  used  in  two  senses ;  it  may  refer  to 

(a)  the  response  of  a  particle  to  a  gravitational  field  of  force,  or  (b)  to  its 

power  of  producing  a  gravitational  field  of  force.  In  the  sense  (a)  its  identity 
with  inertial  mass  is  axiomatic  in  our  theory,  the  separation  of  the  field  of 

force   from   the  inertial  field  being  dependent  on   our  arbitrary  choice   of 

an  abstract  geometry.    We  accordingly  use  the  term  exclusively  in  the  sense 

(b),  and  we  have  shown  in  §§  38,  39  that  the  constant  of  integration  m  repre- 
sents the  gravitational   mass.    But  in  the  present  discussion  the  p0  which 

occurs  in  the  tensor  T^  refers  to  inertial  mass  defined  by  the  conservation  of 

energy  and  momentum.    The  connection  is  made  via  equation  (54*3),  where 
on  the  left  the  mass  appears  in  terms  of  g^,  i.e.  in  terms  of  its  power  of 

exerting  (or  being  accompanied  by)  a  gravitational  field ;  and  on  the  right  it 

appears  in  the  energy-tensor  which  comprises  p0  according  to  (53'1).    But  it 

will  be  remembered  that  the  factor  877-  in  (54*3)  was  chosen  arbitrarily,  and 
this  must  now  be  justified*.   This  coefficient  of  proportionality  corresponds  to 
the  Newtonian  constant  of  gravitation. 

The  proportionality  of  gravitational  and  inertial  mass,  and  the  "  constant 

of  gravitation "  which  connects  them,  are  conceptions  belonging  to  the  ap- 
proximate Newtonian  scheme,  and  therefore  presuppose  that  the  gravitational 

fields  are  so  weak  that  the  equations  can  be  treated  as  linear.  For  more 

intense  fields  the  Newtonian  terminology  becomes  ambiguous,  and  it  is  idle 
to  inquire  whether  the  constant  of  gravitation  really  remains  constant  when 

the  mass  is  enormously  great.  Accordingly  we  here  discuss  only  the  limiting 

case  of  very  wTeak  fields,  and  set 

gH.v=SfJ.l/  +  hf,„   (571), 

where  SM„  represents  Galilean  values,  and  /<M„  will  be  a  small  quantity  of  the 
first  order  whose  square  is  neglected.  The  derivatives  of  the  g^v  will  be  small 

quantities  of  the  first  order. 
We  have,  correct  to  the  first  order, 

QW = <r  iw, = i  <r  ( Pz-  +  ̂      ̂  

d2gVp 

\dx9dxp     
dx^dx,,     

dxvdxp     
dx^dx, 

by  (34-5). 
We  shall  try  to  satisfy  this  by  breaking  it  up  into  two  equations 

.(57-2) 

G^^hsT" 
dxadxp 

(57-31) 

and 

KdXfidXy     dx„dxp      dx^xj     

*  It  has  been  justified  in  §  46,  which  has  a  close  connection  with  the  present  paragraph  ;  but 
the  argument  is  now  proceeding  in  the  reverse  direction. 
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The  second  equation  becomes,  correct  to  the  first  order, 

0  =  8°* 

d-liap        d-h^         d2hup 
dx„dxv     dxvdxp      dxudx, f^p      f^jii 

d%         d%        d% 

dx^dx,,      dx„dxp      dx^dx,,' 

where  /<  =  W^, ;   h  =  hpp  =  h^hap. 
This  is  satisfied  if 

dK      1  dh 

"fL 

dxa      2  dx ̂ 

or  a7aW4W  =  0   (57-4). 
The  other  equation  (5731)  may  be  written 

or  n/c  =  2^> 
showing  that  G*  is  a  small  quantity  of  the  first  order.    Hence 

=  -1677^    (57-5). 

This  "  equation  of  wave-motion"  can  be  integrated.  Since  we  are  dealing 
with  small  quantities  of  the  first  order,  the  effect  of  the  deviations  from 

Galilean  geometry  will  only  affect  the  results  to  the  second  order ;  accordingly 

the  well-known  solution*  may  be  used,  viz. 

K-m  =  ±i(-16"P'dV'   (57-6), 
the  integral  being  taken  over  each  element  of  space- volume  dV  at  a  coordi- 

nate distance  r  from  the  point  considered  and  at  a  time  t  —  r',  i.e.  at  a  time 
such  that  waves  propagated  from  clV  with  unit  velocity  can  reach  the  point 
at  the  time  considered. 

If  we  calculate  from  (57'6)  the  value  of 

the  operator  d/dxa  indicates  a  displacement  in  space  and  time  of  the  point 

considered,  involving  a  change  of  r .    We  may,  however,  keep  r'  constant  on  the 

right-hand  side  and  displace  to  the  same  extent  the  element  dV  where  (T^)'  is 
calculated.   Thus 

But  by  (55"2)  dTaJdxa  is  of  the  second  order  of  small  quantities,  so  that  to  our 
approximation  (57-4)  is  satisfied. 

*  Rayleigh,  Theory  of  Sound,  vol.  n,  p.  104,  equation  (3). 
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The  result  is  that  n^=2G>„   (577) 

satisfies  the  gravitational  equations  correctly  to  the  first  order,  because  both 

the  equations  into  which  we  have  divided  (57*2)  then  become  satisfied.  Of 

course  there  may  be  other  solutions  of  (57-2),  which  do  not  satisfy  (57'31)  and 
(57-32)  separately. 

For  a  static  field  (57*7)  reduces  to 
-V*kliv  =  2Ghv 

^-lijiriT^-^S^T)         by  (54-5). 

Also  for  matter  at  rest  T=  T4i  =  p  (the  inertial  density)  and  the  other  com- 

ponents of  rL\v  vanish ;  thus 

V2{hn,K,K,K)  =  %Trp{l,  1,  1,  1). 

For  a  single  particle  the  solution  of  this  equation  is  well  known  to  be 

2m 
"11  >   "22  >   "33>    "44  — r 

dt2 

•(57-8), 

Hence  by  (57"1)  the  complete  expression  for  the  interval  is 

ds°-  =  -  (l  +  ™)  (da?  +  df-  +  dz>)  +  ( 1  -  ̂  

agreeing  with  (46"15).  But  m  as  here  introduced  is  the  inertial  mass  and  not 
merely  a  constant  of  integration.  We  have  shown  in  §§  38,  39  that  the  m  in 

(46'15)  is  the  gravitational  mass  reckoned  with  constant  of  gravitation  unity. 
Hence  we  see  that  inertial  mass  and  gravitational  mass  are  equal  and  ex- 

pressed in  the  same  units,  when  the  constant  of  proportionality  between  the 

world-tensor  and  the  physical-tensor  is  chosen  to  be  87r  as  in  (54-3). 

In  empty  space  (57*7)  becomes 

showing  that  the  deviations  of  the  gravitational  potentials  are  propagated 

as  waves  with  unit  velocity,  i.e.  the  velocity  of  light  (§  30).  But  it  must  be 

remembered  that  this  representation  of  the  propagation,  though  always  per- 

missible, is  not  unique.  In  replacing  (57"2)  by  (57'31)  and  (57'32),  we  introduce 
a  restriction  which  amounts  to  choosing  a  special  coordinate-system.  Other 

solutions  of  (57-2)  are  possible,  corresponding  to  other  coordinate-systems. 
All  the  coordinate-systems  differ  from  Galilean  coordinates  by  small  quantities 
of  the  first  order.  The  potentials  g^v  pertain  not  only  to  the  gravitational 

influence  which  has  objective  reality,  but  also  to  the  coordinate-system  which 

we  select  arbitrarily.  We  can  "  propagate "  coordinate-changes  with  the 
speed  of  thought,  and  these  may  be  mixed  up  at  will  with  the  more  dilatory 

propagation  discussed  above.  There  does  not  seem  to  be  any  way  of  distin- 
guishing a  physical  and  a  conventional  part  in  the  changes  of  the  g^. 

The  statement  that  in  the  relativity  theory  gravitational  waves  are  pro- 
pagated with  the  speed  of  light  has,  I  believe,  been  based  entirely  on  the 
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foregoing  investigation ;  but  it  will  be  seen  that  it  is  only  true  in  a  very 

conventional  sense.  If  coordinates  are  chosen  so  as  to  satisfy  a  certain  con- 
dition which  has  no  very  clear  geometrical  importance,  the  speed  is  that  of 

light ;  if  the  coordinates  are  slightly  different  the  speed  is  altogether  different 
from  that  of  light.  The  result  stands  or  falls  by  the  choice  of  coordinates  and, 

so  far  as  can  be  judged,  the  coordinates  here  used  were  purposely  introduced 
in  order  to  obtain  the  simplification  which  results  from  representing  the 

propagation  as  occurring  with  the  speed  of  light.  The  argument  thus  follows 
a  vicious  circle. 

Must  we  then  conclude  that  the  speed  of  propagation  of  gravitation  is 

necessarily  a  conventional  conception  without  absolute  meaning  ?  I  think  not. 

The  speed  of  gravitation  is  quite  definite ;  only  the  problem  of  determining 

it  does  not  seem  to  have  yet  been  tackled  correctly.  To  obtain  a  speed  inde- 
pendent of  the  coordinate-system  chosen,  we  must  consider  the  propagation 

not  of  a  world-tensor  but  of  a  world-invariant.  The  simplest  world-invariant 

for  this  purpose  is  B^B*1"7 ,  since  G  and  G>„0"  vanish  in  empty  space.  It  is 
scarcely  possible  to  treat  of  the  propagation  of  an  isolated  pulse  of  gravita- 

tional influence,  because  there  seems  to  be  no  way  of  starting  a  sudden  pulse 

without  calling  in  supernatural  agencies  which  violate  the  equations  of 

mechanics.  We  may  consider  the  regular  train  of  waves  caused  by  the  earth 

in  its  motion  round  the  sun.  At  a  distant  point  in  the  ecliptic  Bl_v<TB*V(T  will 
vary  with  an  annual  periodicity ;  if  it  has  a  maximum  or  minimum  value  at 
the  instant  when  the  earth  is  seen  to  transit  the  sun,  the  inference  is  that  the 

wave  of  disturbance  has  travelled  to  us  at  the  same  speed  as  the  light.  (It 

may  perhaps  be  objected  that  there  is  no  proof  that  the  disturbance  has  been 

propagated  from  the  earth ;  it  might  be  a  stationary  wave  permanently 

located  round  the  sun  which  is  as  much  the  cause  as  the  effect  of  the  earth's 
annual  motion.  I  do  not  think  the  objection  is  valid,  but  it  requires  examina- 

tion.) There  does  not  seem  to  be  any  grave  difficulty  in  treating  this  problem; 
and  it  deserves  investigation. 

58.    Lagrangian  form  of  the  gravitational  equations. 

The  Lagrangian  function  2  is  defined  by 

S  =sr  sj  -~g({na,  £}  {p/3,  a]  -  {pv,  a}  {aft  /3})   (581), 

which  forms  part  of  the   expression  for  ©  (=  r^"  G>„  v7  - g).    For  any  small 
variation  of  £ 

S£  =     {fia,  /3}  8 (sp  V^  [v/3,  a})  +  [vp,  a\  8  (<r  ̂ 9  {/*«,  £}) 

{^v,  a)  8  (rr  </-g  [ct(3,  0})  -  (a/9,  /3]  8  (<T  V  ~g  {fii>,  a}) 

9—2 
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The  first  term  in  (58-2) 

=  -i{/«,0}s(V=5.-?Q       by  (36-11) 

—  iW,a}s(^.|£)       (58-31). 
The  second  term  reduces  to  the  same. 

The  third  term  becomes  by  (35'4) 

-■{^ta}B(sr^^i)      (58-32). In  the  fourth  term  we  have 
   p    

9^^-g{fj,u>a}  =  -  —  (gav>J-g), 

by  (5T41),  since  the  divergence  of  gav  vanishes.    Hence  with  some  alterations 
of  dummy  suffixes,  the  fourth  term  becomes 

{pp,e}fis(^(Sr>/=jj))    (58-33). 

Substituting  these  values  in  (58*2),  we  have 

S2  =      [-  {^,  a]  +  9;  {„£  /3}]  8  (A  (sr  S=jj)) 

-  [>«,  /3}  {v/3,  a}  -  \nv,  a}  {«&  £}]  8  fcr  ̂ )...(584). 

We  write  of"  =  g"-v  V  -  g ;    g£"  =  =-  (^"  V  -  #)    (58-45). 

Then  when  2  is  expressed  as  a  function  of  the  <fv  and  g£",  (58-4)  gives 

~  =  -[{/,«,  £}  [rfr  a}  -  [nv,  a}  {a/3,  j3}\      (58-51), 

||  =     [-{fiv,a}+g;{v^0}]      (58-52). 
Comparing  with  (37  2)  we  have 

^"a^-g^   (586)- 
This  form  resembles  that  of  Lagrange's  equations  in  dynamics.  Regarding 

Of"  as  a  coordinate  q,  and  #a  as  a  four-dimensional  time  t,  so  that  g£"  is  a  velocity 

5',  the  gravitational  equations  6rM„  =  0  correspond  to  the  well-known  form 

dt  dq'      dq 
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The  two  following  formulae  express  important  properties  of  the  Lagrangian 
function : as 

r^  =  -S    (58-71), as 

Cajjjp^28    (58-72)- 
The  first  is  obvious  from  (58-51).    To  prove  the  second,  we  have 

by  (30*1)  since  the  covariant  derivative  of  cf-v  vanishes. 
Hence  by  (58*52) 
3«           

9a" gT^  =^-9l{^>  «}  {««,  /*}  <T  +  {/*',  «}  {e«,  "}  ̂  ~  W>  «}  {ae,  e}  ̂" 

-  {v/3,  0}  cjl  {ea,  ,A  r  -  {v/3,  /3]  &  [ea,  v)  g+  +  [vfr  0}  fi  {oce,  e}  fl 
which  by  change  of  dummy  suffixes  becomes 

=  ̂^9  [{£",  «}  {/*«,  £}  rv  +  W,  «}  K  £}  f  -  (a*».  «)  («&  £}  ̂  

-  {i//3,  £}  {/xa,  a}  ̂   -  (a/3,  /3}  {^,  a}  ̂   +  {v$,  J3]  \fie,  e]  ̂"] 
=  2S         by  (581). 

The  equations  (58*71)  and  (58*72)  show  that  the  Lagrangian  function  is  a 

homogeneous  function  of  degree  —  1  in  the  "  coordinates  "  and  of  degree  2  in 
the  "  velocities." 

We  can  derive  a  useful  expression  for  © 

®  =  ̂ VGH 

r  hV 

a   as         as 
=  cf  r—  r   a*"  5—  by  (58*6) 

as  \         as         as 

%:v    '•  sgr       89"" 

3  / 

-E(r©-«   («*> 
by  (58*71)  and  (58*72). 

It  will  be  seen  that  (@  +  S)  has  the  form  of  a  divergence  (51*12) ;  but  the 
quantity  of  which  it  is  the  divergence  is  not  a  vector-density,  nor  is  S  a  scalar- 
density. 

We  shall  derive  another  formula  which  will  be  needed  in  §  59, 

d  {<fv  ̂ ~Z9)  =  ̂^9  (AST  +  T*  *  \&* d9«t)        ̂   (35-3). 
Hence,  using  (35*2), 

G^d  (g^  V  -  ~g )  =  V-7  (-  fr'dg^  +  kGg*dgafi) 
=  -(G^-^rG)\f -g.dg^ 

=  8tt3>'%m1,   (58*91). 
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Accordingly 

8,r3>%*  =  GW<r 
dxa 

-  n^v       

=  9S 

a    as     as 

agr 

Now 

and  since 

d_f  ̂  J8 

8S  _     3S  3y 

a^„  "~  a^"  a#a  +  a<$"  a#« ' 

a^9a 

as  ̂  _as_ 

—  n^" 

ar 

_as_ 

a9"> 

.(58-92). 

9#a      dxadxp      dxp 

we  see  that  (58*92)  reduces  to 

877- S^"         =  —    a^v   I   

dxa      dxpV*  a^V      dxa 

d_ 

dxp 

7\m.    I  9a 

"»/3 

as 

9$ 

ixv 

-g'A   (58*93). 

59.    Pseudo-energy-tensor  of  the  gravitational  field. 

The  formal  expression  of  the  conservation  of  the  material  energy  and 
momentum  is  contained  in  the  equations 

a_3j=0 

dx„ •  (591), 

0. or,  if  we  name  the  coordinates  x,  y,  z,  t, 

dx*    a.^  M  +a*  ' 
Multiply  by  dxdydz  and  integrate  through  a  given  three-dimensional  region. 
The  last  term  is 

4-  dZ* 

+ar* 

-JJJ^dxdydz. The  other  three  terms  yield  surface-integrals  over  the  boundary  of  the  region. 

Thus  the  law  (59*1)  states  that  the  rate  of  change  of  fffTp* dxdydz  is  equal  to 
certain  terms  which  describe  something  going  on  at  the  boundary  of  the  region. 

In  other  words,  changes  of  this  integral  cannot  be  created  in  the  interior  of 
the  region,  but  are  always  traceable  to  transmission  across  the  boundary.  This 

is  clearly  what  is  meant  by  conservation  of  the  integral. 

This  equation  (59*1)  applies  only  in  the  special  case  when  the  coordinates 
are  such  that  there  is  no  field  of  force.  We  have  generalised  it  by  substituting 

the  corresponding  tensor  equation  T^v  =  0;  but  this  is  no  longer  a  formal  ex- 
pression of  the  conservation  of  anything.  It  is  of  interest  to  compare  the 

traditional  method  of  generalising  (59*1)  in  which  formal  conservation  is 
adhered  to. 
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In  classical  mechanics  the  law  of  conservation  is  restored  by  recognising 

another  form  of  energy — potential  energy — which  is  not  included  in  2£.  This 

is  supposed  to  be  stored  up  in  the  gravitational  field ;  and  similarly  the  mo- 
mentum and  stress  components  may  have  their  invisible  complements  in  the 

gravitational  field.  We  have  therefore  to  add  to  3£  a  complementary  expression 

t"  denoting  potential  energy,  momentum  and  stress;  and  conservation  is  only 
asserted  for  the  sum.    If 

©;=3:;+t;   (59-2), 

then  (59'1)  is  generalised  in  the  form 

S-°    <593)- 
Accordingly  the  difference  between  the  relativity  treatment  and  the 

classical  treatment  is  as  follows.  In  both  theories  it  is  recognised  that  in 

certain  cases  $£  is  conserved,  but  that  in  the  general  case  this  conservation 

breaks  down.  The  relativity  theory  treats  the  general  case  by  discovering  a 

more  exact  formulation  of  what  happens  to  %vfK  when  it  is  not  strictly  con- 
served, viz.  3£„= 0.  The  classical  theory  treats  it  by  introducing  a  supplementary 

energy,  so  that  conservation  is  still  maintained  but  for  a  different  quantity, 
viz.  dSpjdx,,  =  0.  The  relativity  treatment  adheres  to  the  physical  quantity  and 
modifies  the  law ;  the  classical  treatment  adheres  to  the  law  and  modifies  the 

physical  quantity.  Of  course,  both  methods  should  be  expressible  by  equivalent 
formulae  ;  and  we  have  in  our  previous  work  spoken  of  3£„  =  0  as  the  law  of 
conservation  of  energy  and  momentum,  because,  although  it  is  not  formally 
a  law  of  conservation,  it  expresses  exactly  the  phenomena  which  classical 
mechanics  attributes  to  conservation. 

The  relativity  treatment  has  enabled  us  to  discover  the  exact  equations, 

and  we  may  now  apply  these  to  obtain  the  corresponding  exact  expression  for 

the  quantity  3£  introduced  in  the  classical  treatment. 

It  is  clear  that  tjl  and  therefore  3*  cannot  be  tensor-densities,  because  t* 
vanishes  when  natural  coordinates  are  used  at  a  point,  and  would  therefore 

always  vanish  if  it  were  a  tensor-density.  We  call  tjl  the  pseudo-tensor-density 
of  potential  energy. 

The  explicit  value  of  tjl  must  be  calculated  from  the  condition  (59"3),  or 
dxv 

dxv 

= -|2> 

dx„ 
by( 

5.r6) 

= 
1 

16tt 

d  |  ̂ 

as 
9"%\ 

by  (58-93). 

'     ) 

Hence  lG<  =  ̂ -fl?^p   (59'4). 
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This  may  remind  us  of  the  Hamiltonian  integral  of  energy 

in  general  dynamics. 

We  can  form  a  pseudo-scalar-density  by  contraction  of  (59'4) 
167rt  =  4S-qf  J§ 

=  22,        by  (58-72). 

Thus  we  obtain  the  interesting  comparison  with  (54-4) 

@  =  8^|      
<69"°>- It  should  be  understood  that  in  this  section  we  have  been  occupied 

with  the  transition  between  the  old  and  new  points  of  view.  The  quantity  t£ 

represents  the  potential  energy  of  classical  mechanics,  but  we  do  not  ourselves 

recognise  it  as  an  energy  of  any  kind.  It  is  not  a  tensor-densit}^  and  it  can 
be  made  to  vanish  at  any  point  by  suitably  choosing  the  coordinates ;  we  do 

not  associate  it  with  any  absolute  feature  of  world-structure.  In  fact  finite 
values  of  t£  can  be  produced  in  an  empty  world  containing  no  gravitating 

matter  merely  by  choice  of  coordinates.  The  tensor-density  2£  comprises  all 
the  energy  which  we  recognise ;  and  we  call  it  gravitational  or  material  energy 

indiscriminately  according  as  it  is  expressed  in  terms  of  grM„  or  p0,  u,  v,  w. 
This  difference  between  the  classical  and  the  relativity  view  of  energy 

recalls  the  remarks  on  the  definition  of  physical  quantities  made  in  the  Intro- 
duction. As  soon  as  the  principle  of  conservation  of  energy  was  grasped,  the 

physicist  practically  made  it  his  definition  of  energy,  so  that  energy  was  that 

something  which  obeyed  the  law  of  conservation.  He  followed  the  practice  of 

the  pure  mathematician,  defining  energy  by  the  properties  he  wished  it  to 
have,  instead  of  describing  how  he  had  measured  it.  This  procedure  has  turned 
out  to  be  rather  unlucky  in  the  light  of  the  new  developments.  It  is  true  that 

a  quantity  <Sy  can  be  found  which  obeys  the  definition,  but  it  is  not  a  tensor 
and  is  therefore  not  a  direct  measure  of  an  intrinsic  condition  of  the  world. 

Rather  than  saddle  ourselves  with  this  quantity,  which  is  not  now  of  primary 

interest,  we  go  back  to  the  more  primitive  idea  of  vis  viva —generalised,  it  is 
true,  by  admitting  heat  or  molecular  vis  viva  but  not  potential  energy.  We 
find  that  this  is  not  in  all  cases  formally  conserved,  but  it  obeys  the  law  that 

its  divergence  vanishes ;  and  from  our  new  point  of  view  this  is  a  simpler  and 

more  significant  property  than  strict  conservation. 

Integrating  over  an  isolated  material  body  we  may  set 

Zfdxdydz  =  -  Mu,  -  Mv,  -  Mw,  M, 

j][  e^dccdydz  =  -  M'u,  -  M'v',  -  M'w',  M', 
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where  the  latter  expression  includes  the  potential  energy  and  momentum  of 

the  body.  Changes  of  M'u ,  etc.  can  only  occur  by  transfer  from  regions  out- 
side the  body  by  action  passing  through  the  boundary ;  whereas  changes  of 

Mu,  etc.  can  be  produced  by  the  mutual  attractions  of  the  particles  of  the 
body.  It  is  clear  that  the  kinematical  velocity,  or  direction  of  the  world-line 

of  thejbody,  corresponds  to  u  :  v :  w  :  1 ;  the  direction  of  u' :  v':  w  \  1  can  be  varied 
at  will  by  choosing  different  coordinate-systems. 

In  empty  space  the  expression  for  t£  can  be  simplified.  Since  @  =  0,  (58"8) 
becomes 

v  /   a  as 

Hence  16<=  £(**»)  -tf  ̂ 
—  QaP  J J     dx^  dcfi 8"V cx^  L 

.(59-6) 

by  (58-52). 
60.    Action. 

The  invariant  integral 

A=Jfffpo^dT   (60-11) 
represents  the  action  of  the  matter  in  a  four-dimensional  region. 

By  (49-42),  A  =  ffjfpod  Wds 

=  jjdfnds   (6012), 

where  m  is  the  invariant  mass  or  energy. 

Thus  the  action  of  a  particle  having  energy  m  for  a  proper-time  ds  is 
equal  to  mds,  agreeing  with  the  definition  of  action  in  ordinary  mechanics  as 

energy  multiplied  by  time.    By  (54-6)  another  form  is 

A-kl\ll0^   (60'2)- so  that  (ignoring  the  numerical  factor)  G*J—g,  or  @,  represents  the  action- 
density  of  the  gravitational  field.  Note  that  material  action  and  gravitational 

action  are  alternative  aspects  of  the  same  thing ;  they  are  not  to  be  added 

together  to  give  a  total  action. 

But  in  stating  that  the  gravitational  action  and  the  material  action  are 

necessarily  the  same  thing,  we  have  to  bear  in  mind  a  very  peculiar  concepl  toil 

which  is  almost  always  associated  with  the  term  Action.  From  its  first  intro- 
duction, action  has  always  been  looked  upon  as  something  whose  sole  raison 

d'etre  is  to  be  varied — and,  moreover,  varied  in  such  a  way  as  to  defy  the  laws 
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of  nature !  We  have  thus  to  remember  that  when  a  writer  begins  to  talk 
about  action,  he  is  probably  going  to  consider  impossible  conditions  of  the 

world.  (That  does  not  mean  that  he  is  talking  nonsense — he  brings  out  the 
important  features  of  the  possible  conditions  by  comparing  them  with  impossible 
conditions.)  Thus  we  may  not  always  disregard  the  difference  between  material 

and  gravitational  action ;  it  is  impossible  that  there  should  be  any  difference, 
but  then  we  are  about  to  discuss  impossibilities. 

We  have  to  bear  in  mind  the  two  aspects  of  action  in  this  subject.  It  is 

primarily  a  physical  quantity  having  a  definite  numerical  value,  given  in- 

differently by  (60"11)  or  (60'2),  which  is  of  special  importance  because  it  is 
invariant.  But  it  also  denotes  a  mathematical  function  of  the  variables  ;  the 

functional  form,  which  is  all  important,  will  differ  according  to  which  of  the 

two  expressions  is  used.  In  particular  we  have  to  consider  the  partial  deriva- 
tives, and  these  will  depend  on  the  variables  in  terms  of  which  the  action  is 

expressed. 
The  Hamiltonian  method  of  variation  of  an  integral  is  of  great  importance 

in  this  subject ;  several  examples  of  it  will  be  given  presentty.  I  think  it  is 

unfortunate  that  this  valuable  method  is  nearly  always  applied  in  the  form  of 

a  principle  of  stationary  action.  By  considering  the  variation  of  the  integral 

for  small  variations  of  the  g^,  or  other  variables,  we  obtain  a  kind  of  general- 
ised differential  coefficient  which  I  will  call  the  Hamiltonian  derivative.  It 

may  be  possible  to  construct  integrals  for  which  the  Hamiltonian  derivatives 

vanish,  so  that  the  integral  has  the  stationary  property.  But  just  as  in  the 

ordinary  differential  calculus  we  are  not  solely  concerned  with  problems  of 
maxima  and  minima,  and  we  take  some  interest  in  differential  coefficients 

which  do  not  vanish ;  so  Hamiltonian  derivatives  may  be  worthy  of  attention 

even  when  they  disappoint  us  by  failing  to  vanish. 

Let  us  consider  the  variation  of  the  gravitational  action  in  a  region,  viz. 

8ttSA  =  B  jo^-gdr, 

for  arbitrary  small  variations  8g^v  which  vanish  at  and  near*  the  boundary  of 

the  region.    By  (58-8) 

Also  since  S  is  a  function  of  g'1"  and  g£" 

3S   *  3K     \ 

/«*•-/(£  *•■+!= «*-)*■ 
and,  by  partial  integration  of  the  second  term, 

r/  as     a    as  \ B     ,      f  a  /  as  , 

J  Xdof     dxa  da*"/    a  '  dxa  \da>xv   °    J 

*  So  that  their  first  derivatives  also  vanish. 
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By  (58-6)  the  first  integrand  becomes  —  G^Stf"',  so  that  we  have 

8  JO  V^  dr  =  JG„  8  (f  V^)  dr  +  j  L  (>  8  (||))  dr. .  .(60-3). 
The  second  term  can  be  integrated  immediately  giving  a  triple  integral  over 
the  boundary  of  the  four-dimensional  region ;  and  it  vanishes  because  all 
variations  vanish  at  the  boundary  by  hypothesis.    Hence 

8  JG  <J^g~dr  =      JGllp$(giu"S^~g)dT   (6041) 

=  _  f(0«  _  ip»  Q)  fyM1,  s/~~g  dr    (60-42) 

by  (58-91). 
I  call  the  coefficient  —  (O"  —  £#"•"  G)  the  Hamiltonian  derivative  of  G  with 

respect  to  g^,  writing  it  symbolically 

^^-(G^-^^G)  =  87tT^   (60-43). 

We  see  from  (60-42)  that  the  action  A  is  only  stationary  when  the  energy- 

tensor  T^u  vanishes,  that  is  to  say  in  empty  space.  In  fact  action  is  only 
stationary  when  it  does  not  exist — and  not  always  then. 

It  would  thus  appear  that  the  Principle  of  Stationary  Action  is  in  general 

untrue.  Nevertheless  some  modified  statement  of  the  principle  appears  to 
have  considerable  significance.  In  the  actual  world  the  space  occupied  by 

matter  (electrons)  is  extremely  small  compared  with  the  empty  regions.  Thus 

the  Principle  of  Stationary  Action,  although  not  universally  true,  expresses  a 

very  general  tendency — a  tendency  with  exceptions*.  Our  theory  does  not 
account  for  this  atomicity  of  matter ;  and  in  the  stationary  variation  of  action 

we  seem  to  have  an  indication  of  a  way  of  approaching  this  difficult  problem, 
although  the  precise  formulation  of  the  law  of  atomicity  is  not  yet  achieved. 

It  is  suspected  that  it  may  involve  an  "  action "  which  is  capable  only  of 
discontinuous  variation. 

It  is  not  suggested  that  there  is  anything  incorrect  in  the  principle  of 
least  action  as  used  in  classical  mechanics.  The  break-down  occurs  when  we 

attempt  to  generalise  it  for  variations  of  the  state  of  the  system  beyond  those 

hitherto  contemplated.  Indeed  it  is  obvious  that  the  principle  must  break 

down  if  pressed  to  extreme  generality.  We  may  discriminate  (a)  possible 
states  of  the  world,  (6)  states  which  although  impossible  are  contemplated, 

(c)  impossible  states  which  are  not  contemplated.  Generalisation  of  the  prin- 
ciple consists  in  transferring  states  from  class  (c)  to  class  (b) ;  there  must  be 

some  limit  to  this,  for  otherwise  we  should  find  ourselves  asserting  that  the 

equation  8 A  ±0  is  not  merely  not  a  possible  equation  but  also  not  even  an 
impossible  equation. 

*  I  do  not  regard  electromagnetic  fields  as  constituting  an  exception,  because  they  have  not 
yet  been  taken  into  account  in  our  work.  But  the  action  of  matter  has  been  fully  included,  so 

that  the  break-down  of  the  principle  as  applied  to  matter  is  a  definite  exception. 
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61.    A  property  of  invariants. 

Let  K  be  any  invariant  function  of  the  g^v  and  their  derivatives  up  to  any 
order,  so  that 

\K  V  —  g  dr  is  an  invariant. 

The  small  variations  8  (K  V—  g)  can  be  expressed  as  a  linear  sum  of  terms 

involving  8gllv,  8  (dg^v/dxa),  8  (d2g^v/dxadxp),  etc.  By  the  usual  method  of  partial 
integration  employed  in  the  calculus  of  variations,  these  can  all  be  reduced  to 

terms  in  8gliv,  together  with  complete  differentials. 
Thus  for  variations  which  vanish  at  the  boundary  of  the  region,  we  can 

write 

8  iK^-gdr^fp^Sg^^-gdr      (611), 

where  the  coefficients,  here  written  P^v,  can  be  evaluated  when  the  analytical 

expression  for  K  is  given.  The  complete  differentials  yield  surface-integrals 
over  the  boundary,  so  that  they  do  not  contribute  to  the  variations.  In 
accordance  with  our  previous  notation  (6043),  we  have 

pw 

%„ 
.(61-2). 

We  take  P>*v  to  be  symmetrical  in  fj,  and  v,  since  any  antisymmetrical  part 
would  be  meaningless  owing  to  the  inner  multiplication  by  Sg^.  Also  since 

Sg^  is  an  arbitrary  tensor  PILV  must  be  a  tensor. 
Consider  the  case  in  which  the  8g^v  arise  merely  from  a  transformation  of 

coordinates.  Then  (61"1)  vanishes,  not  from  any  stationary  property,  but 
because  of  the  invariance  of  K.  The  8g^v  are  not  now  arbitrary  independent 

variations,  so  that  it  does  not  follow  that  P*"  vanishes. 

Comparing  g^v  and  g^v  +  8glxv  by  (23'22),  since  they  correspond  to  a  trans- 
formation of  coordinates, 

3  (xa  +  8xa)    3  (%p  +  8xp) 
gnV  =  (ga?  +  8gae) 

dxu dxv 

5,      .  dxa  dxp  dxa  3  (Bap)  dxp  3  (8xa) 
=  (#«$  +  tyfaj)  a-a-+  gap  —  -^zr~  +  g*s dxp  dxv (Ji//fjL        OvL'it CJvtr  OvOtt 

But 

Hence 

dxa 

dxu 

91  > 

dx 

rp  =  r/?  by  (22-3). 

»  3  (8xb)         3  (8xa) 
g»v  =  g»v  +  8g^v  +  g^  -^-—  +  g COCp  OJL u 

This  is  a  comparison  of  the  fundamental  tensor  at  xa  +  8xa  in  the  new 

coordinate-system  with  the  value  at  xa  in  the  old  system.  There  would  be  no 
objection  to  using  this  value  of  8g^v  provided  that  we  took  account  of  the 

corresponding  8  (dr).   We  prefer,  however,  to  keep  dr  fixed  in  the  comparison, 
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and  must  compare  the  values  at  xa  in  both  systems.  It  is  therefore  necessary 
to  subtract  the  change  8xa.  dg^Jdxa  of  g^  in  the  distance  8xa;  hence 

t  d(8xa)  d(8xa)      dciuv^ 

-^-to-fcf+fc-fc^  +  ij;*   (61-3). 
Hence  (61*1)  becomes 

8  j  K  V^  dr  =  -  fp-  V"^  [g^  A  {8Xa)  +  gva    *-  (8xa)  +  |jK  ̂  rfT 
which,  by  partial  integration, 

=  2Jpvav8xJ^~gdr  by  (51-51)    (614). 
This  has  to  vanish  for  all  arbitrary  variations  8xa — deformations  of  the  mesh- 

system — and  accordingly 

(P:),  =  0   (61-5). 
We  have  thus  demonstrated  the  general  theorem — 
The  Hamiltonian  derivative  of  any  fundamental  invariant  is  a  tensor  whose 

divergence  vanishes. 

The  theorem  of  §  52  is  a  particular  case,  since  T*v  is  the  Hamiltonian 

derivative  of  G  by  (60-43). 

62.    Alternative  energy-tensors. 

We  have  hitherto  identified  the  energy- tensor  with  G^  —  ̂ g^G  mainly 
because  the  divergence  of  the  latter  vanishes  identically ;  but  the  theorem 

just  proved  enables  us  to  derive  other  fundamental  tensors  whose  divergence 

vanishes,  so  that  alternative  identifications  of  the  energy-tensor  would  seem 
to  be  possible.    The  three  simplest  fundamental  invariants  are 

K=G,    K'-Q„Qrt    K"  =  Bp^B;i"T   (62-1). 

Hitherto  we  have  taken  V\Kj\\g,j.v  to  be  the  energy-tensor;  but  if  rl/T/tl/7M„ 
were  substituted,  the  laws  of  conservation  of  energy  and  momentum  would  be 

satisfied,  since  the  divergence  vanishes.    Similarly  YiK" j\\g^v  could  be  used. 
The  condition  for  empty  space  is  given  by  the  vanishing  of  the  energy- 

tensor.  Hence  for  the  three  possible  hypotheses,  the  law  of  gravitation  in 

empty  space  is 

™}     *£,     g^-O      (62-2) 1W     *W     Ir- 
respectively. 

It  is  easy  to  see  that  the  last  two  tensors  contain  fourth  derivatives  of  the 

g^;  so  that  if  we  can  lay  it  down  as  an  essential  condition  that  the  law  of 

gravitation  in  empty  space  must  be  expressed  by  differential  equations  of  the 



142 ALTERNATIVE  ENERGY-TENSORS CH.  IV 

second  order,  the  only  possible  energy-tensor  is  the  one  hitherto  accepted. 
For  fourth-order  equations  the  question  of  the  nature  of  the  boundary  con- 

ditions necessary  to  supplement  the  differential  equations  would  become  very 

difficult ;  but  this  does  not  seem  to  be  a  conclusive  reason  for  rejecting  such 

equations. 
The  two  alternative  tensors  are  excessively  complicated  expressions ;  but 

when  applied  to  determine  the  field  of  an  isolated  particle,  they  become  not 

unmanageable.  The  field,  being  symmetrical,  must  be  of  the  general  form 
(382),  so  that  we  have  only  to  determine  the  disposable  coefficients  X  and  v 

both  of  which  must  be  functions  of  r  only.  K'  can  be  calculated  in  terms  of 

X  and  v  without  difficulty  from  equations  (38-6) ;  but  the  expression  for  K" 
turns  out  to  be  rather  simpler  and  I  shall  deal  with  it.  By  the  method  of 

§  38,  we  find 

JT  =  K"  V^  =  2£  <*+*>  sin  0  {e~*  (V2  +  v'2)  +  2r2e~2A (£ XV  -  I  v'2  -\v"f 
+  2  (1  -  e-'^/r2}   (62-3). 

It  is  clear  that  the  integral  of  $£"  will  be  stationary  for  variations  from  the 
symmetrical  condition,  so  that  we  need  only  consider  variations  of  A,  and  v 

and  their  derivatives  with  respect  to  r.  Thus  the  gravitational  equations 

\\K" j\\gy,v  =  0  are  equivalent  to 

WK" 

WX 

=  0, 

WK' 

Hi; 

=  0 

.(62-4). 
Now  for  a  variation  of  X fdSt 

;/£*■-/( 
^A,  +  _SX'  +  _SV' 

di 

~  dr  id)  +  h  (aW  hXdr  +  surface-integral
s. [dX      Or  \6X J      dr*  \dX"J) 

Hence  our  equations  (624)  take  the  Lagrangian  form 

WK" 

Wx 

WK" 

Wv 

d$t"  _   d_  8JT '      c?_  W 

dX      dr  dX' d$t"      d  dSt 
-  — -^  + 

dr2  BX" 

d2  dSf 
0 

.(62-5). 

dr2  dv" 

=  0 

dv       dr  dv 

From  these  X  and  v  are  to  be  determined. 

It  can  be  shown  that  one  exact  solution  is  the  same  as  in  §  38,  viz. 

-A  _ 

=  e"  =  7  =  1  —  2m/ r 
.(62-6). 

For  taking  the  partial  derivatives  of  (62-3),  and  applying  (62"6)  after   the differentiation, 

dx =  _srt4(L_p, 

dX'
 

2e*  <*+»  sin  6  =  (  -  72  ~  +  16  ~\  sin  0, 

f\-*d 

t  =  2eh-  <*+">  sin  0  [2e~2KX'  +  r2e~* (£XV  -\v'2-  \v")  v'} 

=    24 m2         m\ 
sin#, 
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OP  ? 

("40^  +  8 -jsin^, 

^  =  -  2e* {K+V)  sin  6 .  2r2e^  (±XV  -  £„'a  -  Ai/')  =  f  16  ?4  -  8  -)  sin  0. ov  \       i  r ) 

On  substituting  these  values,  (62'5)  is  verified  exactly. 

The  alternative  law  \\K'\\\gILV=^  is  also  satisfied  by  the  same  solution. 
For       

8  (G^G^  V7-  g)  =  G„8  (G»  V-  g)  +  G<"  V-  (/  SG^, 

hence  the  variation  of  K'  v7—  g  vanishes  wherever  GM„  =  0.  Any  field  of  gravi- 

tation agreeing  with  Einstein's  law  will  satisfy  the  alternative  law  proposed. 
but  not  usually  vice  versa. 

There  are  doubtless  other  symmetrical  solutions  for  the  alternative  laws 

of  gravitation  which  are  not  permitted  by  Einstein's  law,  since  the  differential 
equations  are  now  of  the  fourth  order  and  involve  two  extra  boundary  con- 

ditions either  at  the  particle  or  at  infinity.  It  may  be  asked,  Why  should 

these  be  excluded  in  nature  ?  We  can  only  answer  that  it  may  be  for  the 

same  reason  that  negative  mass,  doublets,  electrons  of  other  than  standard 

mass,  or  other  theoretically  possible  singularities  in  the  world,  do  not  occur; 

the  ultimate  particle  satisfies  conditions  which  are  at  present  unknown  to  us. 

It  would  seem  therefore  that  there  are  three  admissible  laws  of  gravitation 

(62-2).  Each  can  give  precisely  the  same  gravitational  field  of  the  sun,  and 
all  astronomical  phenomena  are  the  same  whichever  law  is  used.  Small 

differences  may  appear  in  the  cross-terms  due  to  two  or  more  attracting 
bodies ;  but  as  was  shown  in  our  discussion  of  the  lunar  theory  these  are  too 

small  to  be  detected  by  astronomical  observation.  Each  law  gives  precisely 

the  same  mechanical  phenomena,  since  the  conservation  of  energy  and 
momentum  is  satisfied.  When  we  ask  which  of  the  three  is  the  law  of  the 

actual  world,  I  am  not  sure  that  the  question  has  any  meaning.  The  subject 

is  very  mystifying,  and  the  following  suggestions  are  put  forward  very 
tentatively. 

The  energy-tensor  has  been  regarded  as  giving  the  definition  of  matter, 
since  it  comprises  the  properties  by  which  matter  is  described  in  physics. 

Our  three  energy-tensors  give  us  three  alternative  material  worlds ;  and  the 
question  is  which  of  the  three  are  we  looking  at  when  we  contemplate  the 
world  around  us;  but  if  these  three  material  worlds  are  each  doing  the  same 

thing  (within  the  limits  of  observational  accuracy)  it  seems  impossible  to 
decide  whether  we  are  observing  one  or  other  or  all  three. 
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To  put  it  another  way,  an  observation  involves  the  relation  of  the  T^  of 

our  bodies  to  the  T^  of  external  objects,  or  alternatively  of  the  respective 

T'l_  or  T"£.  If  these  are  the  same  relation  it  seems  meaningless  to  ask  which 
of  the  three  bodies  and  corresponding  worlds  the  relation  is  between.  After 

all  it  is  the  relation  which  is  the  reality.  In  accepting  T"^  as  the  energy- 
tensor  we  are  simply  choosing  the  simplest  of  three  possible  modes  of  repre- 

senting the  observation. 
One  cannot  but  suspect  that  there  is  some  identical  relation  between  the 

Hamiltonian  derivatives  of  the  three  fundamental  invariants.  If  this  relation 

were  discovered  it  would  perhaps  clear  up  a  rather  mysterious  subject. 

63.    Gravitational  flux  from  a  particle. 

Let  us  consider  an  empty  region  of  the  world,  and  try  to  create  in  it  one 

or  more  particles  of  small  mass  8m  by  variations  of  the  g^v  within  the  region. 

By  (6012)  and  (60'2), 

sfG^^gdr  =  87rtSm.ds   (631), 

and  by  (6042)  the  left-hand  side  is  zero  because  the  space  is  initially  empty. 
In  the  actual  world  particles  for  which  8m .  ds  is  negative  do  not  exist;  hence  it 

is  impossible  to  create  any  particles  in  an  empty  region,  so  long  as  we  adhere 
to  the  condition  that  the  g^  and  their  first  derivatives  must  not  be  varied  on 

the  boundary.  To  permit  the  creation  of  particles  we  must  give  up  this 
restriction  and  accordingly  resurrect  the  term 

8K^'=I^(»"89*   ^< 
which  was  discarded  from  (60"3).    On  performing  the  first  integration,  (632) 
gives  the  flux  of  the  normal  component  of 

r8©=rV"^8["{'il''a}  +  ̂{^i31]   (63'3) 
across  the  three-dimensional  surface  of  the  region.    The  close  connection  of 

this  expression  with  the  value  of  t£  in  (59"6)  should  be  noticed. 
Take  the  region  in  the  form  of  a  long  tube  and  create  a  particle  of  gravi- 

tational mass  8m  along  its  axis.  The  flux  (63"3)  is  an  invariant,  since  8771 .  ds 
is  invariant,  so  we  may  choose  the  special  coordinates  of  §  38  for  which  the 
particle  is  at  rest.  Take  the  tube  to  be  of  radius  r  and  calculate  the  flux  for 

a  length  of  tube  dt  =  ds.  The  normal  component  of  (63"3)  is  given  by  a  =  1 
and  accordingly  the  flux  is 

<r*/-g8[-ljiv,l}  +  gl{v!3,/3}]d0d<l>dt 

=  4;7T7-2ds  , 

^"g{^,l}+^s(AlogV'_^ 
•(63-4), 
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which  by  (38-5) 

=  47rf2ds  \e~K8  (iV)  -  \  8  (re-x)  -    -J-—,  8  (r sin2  0e~x)  -  e~v  8  Ue*-Kv) 
{         va    '      r8  r2  sm2  tf  a 

-e— 5  (p)|   (G3-5). 
Remembering  that  the  variations  involve  only  Sm.,  this  reduces  to 

4nrr2ds  I  —  87'  — -  87 ) 

=  8Tr8m.ds    (63'6). 

We  have  ignored  the  flux  across  the  two  ends  of  the  tube.  It  is  clear 
that  these  will  counterbalance  one  another. 

This  verification  of  the  general  result  (63"1)  for  the  case  of  a  single  particle 
gives  another  proof  of  the  identity  of  gravitational  mass  with  inertial  mass. 

We  see  then  that  a  particle  is  attended  by  a  certain  flux  of  the  quantity 
(633)  across  all  surrounding  surfaces.  It  is  this  flux  which  makes  the  presence 
of  a  massive  particle  known  to  us,  and  characterises  it ;  in  an  observational 

sense  the  flux  is  the  particle.  So  long  as  the  space  is  empty  the  flux  is  the 
same  across  all  surrounding  surfaces  however  distant,  the  radius  r  of  the  tube 

having  disappeared  in  the  result ;  so  that  in  a  sense  the  Newtonian  law  of 

the  inverse  square  has  a  direct  analogue  in  Einstein's  theory. 
In  general  the  flux  is  modified  in  passing  through  a  region  containing 

other  particles  or  continuous  matter,  since  the  first  term  on  the  right  of  (60"3) 
no  longer  vanishes.  This  may  be  ascribed  analytically  to  the  non-linearity  of 
the  field  equations,  or  physically  to  the  fact  that  the  outflowing  influence  can 

scarcely  exert  its  action  on  other  matter  without  being  modified  in  the  process. 

In  our  verification  for  the  single  particle  the  flux  due  to  8m  was  independent 

of  the  value  of  m  originally  present ;  but  this  is  an  exceptional  case  due  to 

symmetrical  conditions  which  cause  the  integral  of  Tt"'8gtiV  to  vanish  although 
T*v  is  not  zero.  Usually  the  flux  due  to  8m  will  be  modified  if  other  matter 
is  initially  present. 

For  an  isolated  particle  mds  in  any  region  is  stationary  for  variations  of 

its  track,  this  condition  being  equivalent  to  (56"6).  Hence  for  this  kind  of 
variation  the  action  SirXmds  in  a  region  is  stationary.  The  question  arises 

how  this  is  to  be  reconciled  with  our  previous  result  (§  60)  that  the  principle 
of  stationary  action  is  untrue  for  regions  containing  matter.  The  reason  is 

this: — when  we  give  arbitrary  variations  to  the  g^,  the  matter  in  the  tube 
will  in  general  cease  to  be  describable  as  a  particle,  because  it  has  lost  the 

symmetry  of  its  field*.  The  action  therefore  is  only  stationary  for  a  special 
kind  of  variation  of  g^v  in  the  neighbourhood  of  each  particle  which  deforms 

the  track  without  destroying  the  symmetry  of  the  particle;  it  is  not  stationary 
for  unlimited  variations  of  the  g^. 

*  It  will  be  remembered  that  in  deriving  (56-6)  we  had  to  assume  the  symmetry  of  the  particle. . 
E-  10 
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The  fact  that  the  variations  which  cause  the  failure  of  the  principle  of 

stationary  action — those  which  violate  the  symmetry  of  the  particles — are 
impossible  in  the  actual  world  is  irrelevant.  Variations  of  the  track  of  the 

particle  are  equally  impossible,  since  in  the  actual  world  a  particle  cannot 
move  in  any  other  way  than  that  in  which  it  does  move.  The  whole  point  of 

the  Principle  of  Stationary  Action  is  to  show  the  relation  of  an  actual  state 

of  the  world  to  slightly  varied  states  which  cannot  occur.  Thus  the  break- 
down of  the  principle  cannot  be  excused.  But  we  can  see  now  why  it  gives 

correct  results  in  ordinary  mechanics,  which  takes  the  tracks  of  the  particles 

as  the  sole  quantities  to  be  varied,  and  disregards  the  more  general  variations 
of  the  state  of  the  world  for  which  the  principle  ceases  to  be  true. 

64.    Retrospect. 

We  have  developed  the  mathematical  theory  of  a  continuum  of  four 

dimensions  in  which  the  points  are  connected  in  pairs  by  an  absolute  relation 

called  the  interval.  In  order  that  this  theory  may  not  be  merely  an  exercise 

in  pure  mathematics,  but  may  be  applicable  to  the  actual  world,  the  quantities 

appearing  in  the  theory  must  at  some  point  be  tied  on  to  the  things  of 

experience.  In  the  earlier  chapters  this  was  done  by  identifying  the  mathe- 
matical interval  with  a  quantity  which  is  the  result  of  practical  measurement 

with  scales  and  clocks.  In  the  present  chapter  this  point  of  contact  of  theory 

and  experience  has  passed  into  the  background,  and  attention  has  been 

focussed  on  another  opportunity  of  making  the  connection.  The  quantity 

G^  —  ̂ g^G  appearing  in  the  theory  is,  on  account  of  its  property  of  conserva- 
tion, now  identified  with  matter,  or  rather  with  the  mechanical  abstraction 

of  matter  which  comprises  the  measurable  properties  of  mass,  momentum  and 

stress  sufficing  for  all  mechanical  phenomena.  By  making  the  connection 

between  mathematical  theory  and  the  actual  world  at  this  point,  we  obtain  a 

great  lift  forward. 
Having  now  two  points  of  contact  with  the  physical  world,  it  should 

become  possible  to  construct  a  complete  cycle  of  reasoning.  There  is  one 

chain  of  pure  deduction  passing  from  the  mathematical  interval  to  the  mathe- 

matical energy-tensor.  The  other  chain  binds  the  physical  manifestations  of 

the  energy-tensor  and  the  interval ;  it  passes  from  matter  as  now  defined  by 
the  energy-tensor  to  the  interval  regarded  as  the  result  of  measurements  made 
with  this  matter.    The  discussion  of  this  second  chain  still  lies  ahead  of  us. 

If  actual  matter  had  no  other  properties  save  such  as  are  implied  in  the 

functional  form  of  G^  —  ig^G,  it  would,  I  think,  be  impossible  to  make  measure- 
ments with  it.  The  property  which  makes  it  serviceable  for  measurement  is 

discontinuity  (not  necessarily  in  the  strict  sense,  but  discontinuity  from  the 

macroscopic  standpoint,  i.e.  atomicity).  So  far  our  only  attempt  to  employ 

the  new-found  matter  for  measuring  intervals  has  been  in  the  study  of  the 
dynamics  of  a  particle  in  §  56  ;  we  had  there  to  assume  that  discrete  particles 
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exist  and  further  that  they  have  necessarily  a  symmetry  of  field ;  on  this 

understanding  we  have  completed  the  cycle  for  one  of  our  most  important 

test-bodies — the  moving  particle — the  geodesic  motion  of  which  is  used,  espe- 
cially in  astronomy,  for  comparing  intervals.  But  the  theory  of  the  use  of 

matter  for  the  purpose  of  measuring  intervals  will  be  taken  up  in  a  more 

general  way  at  the  beginning  of  the  next  chapter,  and  it  will  be  seen  how 

profoundly  the  existence  of  the  complete  cycle  has  determined  that  outlook 
on  the  world  which  we  express  in  our  formulation  of  the  laws  of  mechanics. 

It  is  a  feature  of  our  attitude  towards  nature  that  we  pay  great  regard  to 

that  which  is  permanent ;  and  for  the  same  reason  the  creation  of  anything 

in  the  midst  of  a  region  is  signalised  by  us  as  more  worthy  of  remark  than 

its  entry  in  the  orthodox  manner  through  the  boundary.  Thus  when  we 
consider  how  an  invariant  depends  on  the  variables  used  to  describe  the 

world,  we  attach  more  importance  to  changes  which  result  in  creation  than 

to  changes  which  merely  involve  transfer  from  elsewhere.  It  is  perhaps  for 
this  reason  that  the  Hamiltonian  derivative  of  an  invariant  gives  a  quantity 

of  greater  significance  for  us  than,  for  example,  the  ordinary  derivative.  The 
Hamiltonian  derivative  has  a  creative  quality,  and  thus  stands  out  in  our 

minds  as  an  active  agent  working  in  the  passive  field  of  space-time.  Unless 
this  idiosyncrasy  of  our  practical  outlook  is  understood,  the  Hamiltonian 

method  with  its  casting  away  of  boundary  integrals  appears  somewhat  arti- 
ficial ;  but  it  is  actually  the  natural  method  of  deriving  physical  quantities 

prominent  in  our  survey  of  the  world,  because  it  is  guided  by  those  prin- 
ciples which  have  determined  their  prominence.  The  particular  form  of  the 

Hamiltonian  method  known  as  Least  Action,  in  which  special  search  is  made 

for  Hamiltonian  derivatives  which  vanish,  does  not  appear  at  present  to  admit 

of  any  very  general  application.  In  any  case  it  seems  better  adapted  to  give 
neat  mathematical  formulae  than  to  give  physical  insight;  to  grasp  the 
equality  or  identity  of  two  physical  quantities  is  simpler  than  to  ponder  over 

the  behaviour  of  the  quantity  which  is  their  difference — distinguished  though 
it  may  be  by  the  important  property  of  being  incapable  of  existing ! 

According  to  the  views  reached  in  this  chapter  the  law  of  gravitation 

G^v  =  0  is  not  to  be  regarded  as  an  expression  for  the  natural  texture  of  the 
continuum,  which  can  only  be  forcibly  broken  at  points  where  some  extraneous 

agent  (matter)  is  inserted.  The  differentiation  of  occupied  and  unoccupied 

space  arises  from  our  particular  outlook  on  the  continuum,  which,  as  explained 

above,  is  such  that  the  Hamiltonian  derivatives  of  the  principal  invariant  G 

stand  out  as  active  agents  against  the  passive  background.  It  is  therefore 

the  regions  in  which  these  derivatives  vanish  which  are  regarded  by  us  as 

unoccupied;  and  the  law  0^=0  merely  expresses  the  discrimination  made 
by  this  process. 

Among  the  minor  points  discussed,  we  have  considered  the  speed  of  pro- 
pagation of  gravitational  influence.    It  is  presumed  that  the  speed  is  that 

10—2 
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of  light,  but  this  does  not  appear  to  have  been  established  rigorously.  Any 

absolute  influence  must  be  measured  by  an  invariant,  particularly  the  in- 

variant B^a-  B^va '.  The  propagation  of  this  invariant  does  not  seem  to  have 
been  investigated. 

The  ordinary  potential  energy  of  a  weight  raised  to  a  height  is  not  counted 

as  energy  in  our  theory  and  does  not  appear  in  our  energy-tensor.  It  is  found 

superfluous  because  the  property  of  our  energy-tensor  has  been  formulated 
as  a  general  law  which  from  the  absolute  point  of  view  is  simpler  than  the 

formal  law  of  conservation.  The  potential  energy  and  momentum  t"L  needed 
if  the  formal  law  of  conservation  is  preserved  is  not  a  tensor,  and  «must  be 

regarded  as  a  mathematical  fiction,  not  as  representing  any  significant  con- 

dition of  the  world.  The  pseudo-energy-tensor  t£  can  be  created  and  destroyed 

at  will  by  changes  of  coordinates;  and  even  in  a  world  containing  no  attrac ting- 
matter  (flat  space- time)  it  does  not  necessarily  vanish.  It  is  therefore  im- 

possible to  regard  it  as  of  a  nature  homogeneous  with  the  proper  energy- 
tensor. 



CHAPTER  V 

CURVATURE  OF  SPACE  AND  TIME 

65.    Curvature  of  a  four-dimensional  manifold. 

In  the  general  Riemannian  geometry  admitted  in  our  theory  the  g^  may 

be  any  10  functions  of  the  four  coordinates  x^. 
A  four-dimensional  continuum  obeying  Riemannian  geometry  can  be 

represented  graphically  as  a  surface  of  four  dimensions  drawn  in  a  Euclidean 

hyperspace  of  a  sufficient  number  of  dimensions.  Actually  10  dimensions  are 

required,  corresponding  to  the  number  of  the  g^.  For  let  (yu  y2,  y3, . ..  y10)  be 

rectangular  Euclidean  coordinates,  and  (xu  x.2,  xs,  ar4)  parameters  on  the  sur- 
face ;  the  equations  of  the  surface  will  be  of  the  form 

V\  =/i  (^i.  x-2>  x»>  *«).    >  Sto  =/w  (^n  a"2»  #8,  »4>- 

For  an  interval  on  the  surface,  the  Euclidean  geometry  of  the  y's  gives 

-  ds2  =  dyf  +  dyi  +  dy3-  +  ...  +  dy\0 

\dx1  ox2  oxx  ox2) 

Equating  the  coefficients  to  the  given  functions  g^,  we  have  10  partial  differ- 
ential equations  of  the  form 

dxp.  dxv  dxp  dxv 

to  be  satisfied  by  the  10  /'s.    Clearly  it  would  not  be  possible  to  satisfy  these 

equations  with  less  than  10  /'s  except  in  special  cases. 
When  we  use  the  phrase  "  curvature  "  in  connection  with  space-time,  we 

always  think  of  it  as  embedded  in  this  way  in  a  Euclidean  space  of  higher 
dimensions.  It  is  not  suggested  that  the  higher  space  has  any  existence;  the 

purpose  of  the  representation  is  to  picture  more  vividly  the  metrical  pro- 
perties of  the  world.  It  must  be  remembered  too  that  a  great  variety  of 

four-dimensional  surfaces  in  10  dimensions  will  possess  the  same  metric,  i.e.  be 

applicable  to  one  another  by  bending  without  stretching,  and  any  one  of  these 

can  be  chosen  to  represent  the  metric  of  space-time.  Thus  a  geometrical  pro- 
perty of  the  chosen  representative  surface  need  not  necessarily  be  a  property 

belonging  intrinsically  to  the  space-time  continuum. 
A  four-dimensional  surface  free  to  twist  about  in  six  additional  dimensions 

has  bewildering  possibilities.  We  consider  first  the  simple  case  in  which  the 

surface,  or  at  least  a  small  portion  of  it,  can  be  drawn  in  Euclidean  space  of 
five  dimensions. 
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Take  a  point  on  the  surface  as  origin.  Let  (cc1,  x2,  x3,  x4)  be  rectangular 

coordinates  in  the  tangent  plane  (four-dimensional)  at  the  origin ;  and  let  the 
fifth  rectangular  axis  along  the  normal  be  z.    Then  by  Euclidean  geometry 

-  ds2  =  dx2  +  dx22  4-  dx2  +  dx2  +  dz2   (65  •  1 ), 

imaginary  values  of  ds  corresponding  as  usual  to  real  distances  in  space.  The 

four-dimensional  surface  will  be  specified  by  a  single  equation  between  the 
five  coordinates,  which  we  may  take  to  be 

Z~  J   \pC\,   &2>   ̂ 3)   ̂ i)' 

If  the  origin  is  a  regular  point  this  can  be  expanded  in  powers  of  the  xs.  The 

deviation  from  the  tangent  plane  is  of  the  second  order  compared  with  dis- 
tances parallel  to  the  plane ;  consequently  z  does  not  contain  linear  terms  in 

the  x's.  The  expansion  accordingly  starts  with  a  homogeneous  quadratic 
function,  and  the  equation  is  of  the  form 

2z  =  a^XpXy   (65*2), 

correct  to  the  second  order.  For  a  fixed  value  of  z  the  quadric  (65*2)  is  called 
the  indicatrix. 

The  radius  of  curvature  of  any  normal  section  of  the  surface  is  found  by 
the  well-known  method.  If  t  is  the  radius  of  the  indicatrix  in  the  direction  of 

the  section  (direction  cosines  l1}  l2)  l3,  £,),  the  radius  of  curvature  is 

=  t"  =       1 £Z  duvViiLt, 

«•■/*!>  "ffV 

In  particular,  if  the  axes  are  rotated  so  as  to  coincide  with  the  principal  axes 

of  the  indicatrix,  (65*2)  becomes 

2z  =  ldxf  +  k2x22  +  h3x2  +  k4x42   (65-3), 
and  the  principal  radii  of  curvature  of  the   surface  are  the  reciprocals  of 
Kly  fC2,  tC3,  fC4. 

Differentiating  (65-2) 

Hence,  substituting  in  (65*1) 
—  ds2  =  dxf  +  dx22  +  dx32  +  d%£  4-  (a^a^x^Xg)  dx„dxT 

for  points  in  the  four-dimensional  continuum.    Accordingly 

-9^=9l  +  a(lvaaTxlixa   (65'4). 
Hence  at  the  origin  the  g^  are  Euclidean ;  their  first  derivatives  vanish  ; 

and  their  second  derivatives  are  given  by 
d2gVT 

by  (35-5). 
Calculating  the  Riemann-Christoffel  tensor  by  (34*5),  since  the  first  deri- 

vatives vanish, 

B  vv  =-  (  d2g,Tp  +  d2g*v  -  ®9lur  -   d'9vl> l""Tp      2  \dxlldxv      dxadxp      dxvdxp      dx^dxc 
~=  (' fii/Cvijp       "/iff U>i'p      ^00  Ol). 
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Hence,  remembering  that  the  gT<>  have  Euclidean  values  —  (f , 

Gy.v  —  y^B >*»«  =  ~  <V  («n  +  aoo  +  Ogg  +  au)  +  ahaa¥„   (65'52). 
In  particular 

^11  =  —  «11  ((hi  +  «22  +  «33  +  «u)  +  «211    +   «2]-J  +   «2]3  +  «214 

=  (a212  -  aua22)  +  (a-K  -  ana33)  +  (a-14  -  ona4J)   (G5-53). Also 

Gr  =  (/lv  G>„  =  —  Gn—  G.i2  —  G33  —  Gu 

=  -  2  {(a212  -  au  a,,)  +  {a\3 -  an  a33)  +  (a2u  -  an  au)  +  (a%  -  a^a^) 

+  {a'2.24-a22aii)  +  (a2.M-a33aii)}      (65*54). 

When  the  principal  axes  are  taken  as  in  (65'3),  these  results  become 
Gu  =  -  k,  (k2  +  k3  +  kt) 

(6  5  55) 

#22  =  -  k,  (k,  +  ks  +  k4) ;  etc.  1  '  *v 

and  G    =  2(k1k2  +  k1k3  +  k1ki  +  kak3  +  k2k\  +  kak4)     (65-6). 

The  invariant  G  has  thus  a  comparatively  simple  interpretation  in  terms 

of  the  principal  radii  of  curvature.  It  is  a  generalisation  of  the  well-known 

invariant  for  two-dimensional  surfaces  l/p1p2,  or  k^k^.  But  this  interpretation 
is  only  possible  in  the  simple  case  of  five  dimensions.  In  general  five  dimensions 

are  not  sufficient  to  represent  even  the  small  portion  of  the  surface  near  the 

origin ;  for  if  we  set  G^v  =  0  in  (Q5'55),  we  obtain  fcM  =  0,  and  hence  by  (65"51) 
B^vap  =  0.  Thus  it  is  not  possible  to  represent  a  natural  gravitational  field 
(G^  =  0,  BnV<Tp±  0)  in  five  Euclidean  dimensions. 

In  the  more  general  case  we  continue  to  call  the  invariant  G  the  Gaussian 

curvature  although  the  interpretation  in  terms  of  normal  curvatures  no  longer 

holds.  It  is  convenient  also  to  introduce  a  quantity  called  the  radius  of 
spherical  curvature,  viz.  the  radius  of  a  hypersphere  which  has  the  same 

Gaussian  curvature  as  the  surface  considered*. 
Considering  the  geometry  of  the  general  case,  in  10  dimensions  the  normal  is 

a  six-dimensional  continuum  in  which  we  can  take  rectangular  axes  zl,  z.2,  ...  z6. 
The  surface  is  then  defined  by  six  equations  which  near  the  origin  take  the 
form 

2zr  =  a^cc^x,,         (r  —  1,  2  ...  6). 

The  radius  of  curvature  of  a  normal  section  in  the  direction  l^  is  then 

  P          1   

P  ~  2  VO,2  +  zi  +  •  •  ■  +  zi)  ~  VKoim*  Wa  +  •  •  •  +  (<W/X)2} " 

It  is,  however,  of  little  profit  to  develop  the  properties  of  normal  curvature, 

which  depend  on  the  surface  chosen  to  represent  the  metric  of  space-time 
and  are  not  intrinsic  in  the  metric  itself.    We  therefore  follow  a  different  plan, 

introducing  the  radius  of  spherical  curvature  which  has  invariant  properties. 

*  A  hypersphere  of  four  dimensions  is  by  definition  a  four-dimensional  surface  drawn  in  five 

dimensions  so  that  (65-6)  applies  to  it.  Accordingly  if  its  radius  is  Ii,  we  have  G  =  V2  /.'-'.  For 
three  dimensions  G  =  GjR-\  for  two  dimensions  G=2/J?'2. 



152  CURVATURE  OF  A  FOUR-DIMENSIONAL  MANIFOLD  CH.  V 

Reverting  for  the  moment  to  five  dimensions,  consider  the  three-dimensional 

space  formed  by  the  section  of  our  surface  by  a^  =  0.    Let  G{1)  be  its  Gaussian 
curvature.    Then  6r<„  is  formed  from  G  by  dropping  all  terms  containing  the 

suffix  1 — a  dimension  which  no  longer  enters  into  consideration.    Accordingly 

G  —  6r(D  consists  of  those  terms  of  G  which  contain  the  suffix  1 ;  and  by  (65-53) 
and  (05  54)  we  have 

k(G-G{1))  =  -Gu      (65-71). 

Introducing  the  value  gu  =  -  1  at  the  origin 

Gh-*0uG-*G«   (65-72).         1 
This  result  obtained  for  five  dimensions  is  perfectly  general.  From  the 

manner  in  which  (65*4)  was  obtained,  it  will  be  seen  that  each  of  the  six  z's  will 
make  contributions  to  gVT  which  are  simply  additive ;  we  have  merely  to  sum 

a^a^x^Wa-  for  the  six  values  of  a^a^  contributed  by  the  six  terms  dz/.  All  the  V 

subsequent  steps  involve  linear  equations  and  the  work  will  hold  for  six  z's 
just  as  well  as  for  one  z.  Hence  (65 '7 2)  is  true  in  the  general  case  when  the 
representation  requires  10  dimensions. 

Now  consider  the  invariant  quadric 

(G>„  —  \giLvG~)  dory,dxv  =  3   (6581 ). 

Let  p1  be  the  radius  of  this  quadric  in  the  xx  direction,  so  that  dx^  =  (pi ,  0, 0, 0) 
is  a  point  on  the  quadric ;  the  equation  gives 

(Gn-hgnG)ps  =  3,  I 

so  that  by  (6572)  (?(1)  =  4    (65-82). 

Pi 

But  for  a  hypersphere  of  radius  R  of  three  dimensions  (kx  =  k»  =  k3  =  1/R  ; 

A"4  disappears)  the  Gaussian  curvature  is  6/R-.  Hence  px  is  the  radius  of 
spherical  curvature  of  the  three-dimensional  section  of  the  world  perpendicular 
to  the  axis  xx. 

Now  the  quadric  (65*81)  is  invariant,  so  that  the  axis  xx  may  be  taken  in 
any  arbitrary  direction.    Accordingly  we  see  that — 

The  radius  of  the  quadric  (G>„  —  hg^G)  dx^dx^  =  3  in  any  direction  is  equal 

to  the  radius  of  spherical  curvature  of  the  corresponding  three-dimensional 
section  of  the  world. 

We  call  this  quadric  the  quadric  of  curvature. 

66.    Interpretation  of  Einstein's  law  of  gravitation. 

We  take  the  later  form  of  Einstein's  law  (37*4) 

Gliv=\glu,      (661) 

in  empty  space,  X,  being  a  universal  constant  at  present  unknown  but  so  small 
as  not  to  upset  the  agreement  with  observation  established  for  the  original 

form  G,j,v  =  0.    We  at  once  obtain  G  =  4X,,  and  hence 

@m-»  ~  \9v<>  G  =  —  \g^ 

IH-V 
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Substituting  in  (65'81)  the  quadric  of  curvature  becomes 

—  Xg^d.Tp.dx,,  =  3, 

or  -ds'-  =  3/\   (66'2). 

That  is  to  say,  the  quadric  of  curvature  is  a  sphere  of  radius  V(3/X.),  and  the 
radius  of  curvature  in  every  direction*  and  at  every  point  in  empty  space  has 
the  constant  length  \/(3/\). 

Conversely  if  the  directed  radius  of  curvature  in  empty  space  is  homo- 

geneous and  isotropic  Einstein's  law  will  hold. 
The  statement  that  the  radius  of  curvature  is  a  constant  length  requires 

more  consideration  before  its  full  significance  is  appreciated.  Length  is  not 
absolute,  and  the  result  can  only  mean  constant  relative  to  the  material  standards 

of  length  used  in  all  our  measurements  and  in  particular  in  those  measurements 

which  verify  G>„  =  \g^„.  In  order  to  make  a  direct  comparison  the  material 
unit  must  be  conveyed  to  the  place  and  pointed  in  the  direction  of  the  length 
to  be  measured.  It  is  true  that  we  often  use  indirect  methods  avoiding  actual 
transfer  or  orientation  ;  but  the  justification  of  these  indirect  methods  is  that 

they  give  the  same  result  as  a  direct  comparison,  and  their  validity  depends 

on  the  truth  of  the  fundamental  laws  of  nature.  We  are  here  discussing  the 
most  fundamental  of  these  laws,  and  to  admit  the  validity  of  the  indirect 

methods  of  comparison  at  this  stage  would  land  us  in  a  vicious  circle.  Ac- 
cordingly the  precise  statement  of  our  result  is  that  the  radius  of  curvature 

at  any  point  and  in  any  direction  is  in  constant  proportion  to  the  length  of  a 

specified  material  unit  placed  at  the  same  point  and  orientated  in  the  same 
direction. 

This  becomes  more  illuminating  if  we  invert  the  comparison — 

The  length  of  a  specified  material  structure  bears  a  constant  ratio  to  the 

radius  of  curvature  of  the  world  at  the  place  and  in  the  direction  in  which  it 
lies    (663). 

The  law  no  longer  appears  to  have  any  reference  to  the  constitution  of  an 

empty  continuum.  It  is  a  law  of  material  structure  showing  what  dimensions 
a  specified  collection  of  molecules  must  take  up  in  order  to  adjust  itself  to 

equilibrium  with  surrounding  conditions  of  the  world. 

The  possibility  of  the  existence  of  an  electron  in  space  is  a  remarkable 

phenomenon  which  we  do  not  yet  understand.  The  details  of  its  structure 

must  be  determined  by  some  unknown  set  of  equations,  which  apparently 
admit  of  only  two  discrete  solutions,  the  one  giving  a  negative  electroD  and 

the  other  a  positive  electron  or  proton.    If  we  solve  these  equations  to  find 

*  For  brevity  I  use  the  phrase  "radius  of  curvature  in  a  direction"  to  mean  the  radius  of 
spberical  curvature  of  the  three-dimensional  section  of  the  world  at  right  angles  to  that  direction. 
There  is  no  other  radius  of  curvature  associated  with  a  direction  Likely  to  be  confused  with  it. 
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the  radius  of  the  electron  in  any  direction,  the  result  must  necessarily  take 
the  form 

radius  of  electron  in  given  direction  =  numerical  constant  x  some 
function  of  the  conditions  in  the  space  into  which  the  electron 
was  inserted. 

And  since  the  quantity  on  the  left  is  a  directed  length,  the  quantity  on  the 

right  must  be  a  directed  length.  We  have  just  found  one  directed  length 

characteristic  of  the  empty  space  in  which  the  electron  was  introduced,  viz. 

the  radius  of  spherical  curvature  of  a  corresponding  section  of  the  world. 

Presumably  by  going  to  third  or  fourth  derivatives  of  the  g^v  other  independent 
directed  lengths  could  be  constructed ;  but  that  seems  to  involve  an  unlikely 

complication.  There  is  strong  ground  then  for  anticipating  that  the  solution 
of  the  unknown  equations  will  be 

radius  of  electron  in  any  direction  =  numerical  constant  x  radius  of 

curvature  of  space-time  in  that  direction. 

This  leads  at  once  to  the  law  (66"3). 
As  with  the  electron,  so  with  the  atom  and  aggregations  of  atoms  forming 

the  practical  units  of  material  structure.  Thus  we  see  that  Einstein's  law  of 
gravitation  is  the  almost  inevitable  outcome  of  the  use  of  material  measuring- 
appliances  for  surveying  the  world,  whatever  may  be  the  actual  laws  under 

which  material  structures  are  adjusted  in  equilibrium  with  the  empty  space 
around  them. 

Imagine  first  a  world  in  which  the  curvature,  referred  to  some  chosen 

(non-material)  standard  of  measurement,  was  not  isotropic.  An  electron  in- 
serted in  this  would  need  to  have  the  same  anisotropy  in  order  that  it  might 

obey  the  same  detailed  conditions  of  equilibrium  as  a  symmetrical  electron  in 
an  isotropic  world.  The  same  anisotropy  persists  in  any  material  structure 

formed  of  these  electrons.  Finally  when  we  measure  the  world,  i.e.  make  com- 
parisons with  material  structures,  the  anisotropy  occurs  on  both  sides  of  the 

comparison  and  is  eliminated.  Einstein's  law  of  gravitation  expresses  the 
result  of  this  elimination.  The  symmetry  and  homogeneity  expressed  by 

Einstein's  law  is  not  a  property  of  the  external  world,  but  a  property  of  the 
operation  of  measurement. 

From  this  point  of  view  it  is  inevitable  that  the  constant  A,  cannot  be 

zero ;  so  that  empty  space  has  a  finite  radius  of  curvature  relative  to  familiar 
standards.  An  electron  could  never  decide  how  large  it  ought  to  be  unless 

there  existed  some  length  independent  of  itself  for  it  to  compare  itself  with. 

It  will  be  noticed  that  our  rectangular  coordinates  (xl3  x.2,  xz,  #4)  in  this 

and  the  previous  section  approximate  to  Euclidean,  not  Galilean,  coordinates. 

Consequently  xi  is  imaginary  time,  and  G(i)  is  not  in  any  real  direction 
in  the  world.  There  is  no  radius  of  curvature  in  a  real  timelike  direction. 

This  does  not  mean  that  our  discussion  is  limited  to  three  dimensions ;  it 

includes  all  directions  in  the  four-dimensional  world  outside  the  light-cone, 



66,  67       INTERPRETATION  OF  EINSTEIN'S  LAW  OF  GRAVITATION  155 

and  applies  to  the  space-dimensions  of  material  structures  moving  with  any 
speed  up  to  the  speed  of  light.  The  real  quadric  of  curvature  terminates  at 

the  light-cone,  and  the  mathematical  continuation  of  it  lies  not  inside  the 
cone  but  in  directions  of  imaginary  time  which  do  not  concern  us. 

By  consideration  of  extension  in  timelike  directions  we  obtain  a  confirma- 
tion of  these  views,  which  is,  I  think,  not  entirely  fantastic.  We  have  said  that 

an  electron  would  not  know  how  large  it  ought  to  be  unless  there  existed  in- 
dependent lengths  in  space  for  it  to  measure  itself  against.  Similarly  it  would 

not  know  how  long  it  ought  to  exist  unless  there  existed  a  length  in  time  for 

it  to  measure  itself  against.  But  there  is  no  radius  of  curvature  in  a  time-like 
direction  ;  so  the  electron  does  not  know  how  long  it  ought  to  exist.  Therefore 
it  just  goes  on  existing  indefinitely. 

The  alternative  laws  of  gravitation  discussed  in  §  62  would  be  obtained  if 
the  radius  of  the  unit  of  material  structure  adjusted  itself  as  a  definite  fraction 

not  of  the  radius  of  curvature,  but  of  other  directed  lengths  (of  a  more  com- 

plex origin)  characteristic  of  empty  space-time. 
In  §  56  it  was  necessary  to  postulate  that  the  gravitational  field  due  to  an 

ultimate  particle  of  matter  has  symmetrical  properties.  This  has  now  been 

justified.  We  have  introduced  a  new  and  far-reaching  principle  into  the 
relativity  theory,  viz.  that  symmetry  itself  can  only  be  relative ;  and  the 
particle,  which  so  far  as  mechanics  is  concerned  is  to  be  identified  with  its 

gravitational  field,  is  the  standard  of  symmetry.  We  reach  the  same  result  if 

we  attempt  to  define  symmetry  by  the  propagation  of  light,  so  that  the  cone 

ds=0  is  taken  as  the  standard  of  symmetry.  It  is  clear  that  if  the  locus 

ds  =  0  has  complete  symmetry  about  an  axis  (taken  as  the  axis  of  t)  ds'2  must 
be  expressible  by  the  formula  (38-12). 

The  double-linkage  of  field  and  matter,  matter  and  field,  will  now  be 
realised.  Matter  is  derived  from  the  fundamental  tensor  g^„  by  the  expression 

G^—^g^G;  but  it  is  matter  so  derived  which  is  initially  used  to  measure 
the  fundamental  tensor  g^.  We  have  in  this  section  considered  one  simple 

consequence  of  this  cycle — the  law  of  gravitation.  It  needs  a  broader  analysis 
to  follow  out  the  full  consequences,  and  this  will  be  attempted  in  Chapter  VII, 
Part  II. 

67.    Cylindrical  and  spherical  space-time. 

According  to  the  foregoing  section  A,  does  not  vanish,  and  there  is  a 

small  but  finite  curvature  at  every  point  of  space  and  time.  This  suggests 
the  consideration  of  the  shape  and  size  of  the  world  as  a  whole. 

Two  forms  of  the  world  have  been  suggested — 

(1)  Einstein's  cylindrical  world.  Here  the  space-dimensions  correspond 
to  a  sphere,  but  the  time-dimension  is  uncurved. 

(2)  De  Sitter's  spherical  world.  Here  all  dimensions  are  spherical ;  but 
since  it  is  imaginary  time  which  is  homogeneous  with  the  space-coordinates, 
sections  containing  real  time  become  hyperbolas  instead  of  circles. 



156  CYLINDRICAL  AND  SPHERICAL  SPACE-TIME  CH.  V 

We  must  describe  these  two  forms  analytically.  A  point  on  the  surface  of 

a  sphere  of  radius  R  is  described  by  two  angular  variables  6,  (f>,  such  that 

-  ds2  =  R-  {dfr  +  sin2  6dcf>2). 

Extending  this  to  three  dimensions,  we  have  three  angular  variables  such  that 

-  ds2  =  R2  {dx2  +  sin2  %  W*  +  sin2  6d<p)}       (6711). 

Accordingly  in  Einstein's  form  the  interval  is  given  by 
ds2  =  -  R2dx2  -  R2  sin2  X  (d6*  +  sin2  dd<f>2)  +  dt2    (6712). 

Of  course  this  form  applies  only  to  a  survey  of  the  world  on  the  grand 

scale.  Trifling  irregularities  due  to  the  aggregation  of  matter  into  stars  and 

stellar  systems  are  treated  as  local  deviations  which  can  be  disregarded. 
Proceeding  from  the  origin  in  any  direction,  RX  is  the  distance  determined 

by  measurement  with  rigid  scales.  But  the  measured  area  of  a  sphere  of  radius 

Ry  is  not  ̂ ttR'x2  hut  4>7rR2  sin2  %.  There  is  not  so  much  elbow-room  in  distant 

parts  as  Euclid  supposed.  We  reach  a  "greatest  sphere  "  at  the  distance  ̂ rrR\ 
proceeding  further,  successive  spheres  contract  and  decrease  to  a  single  point 

at  a  distance  ttR — the  greatest  distance  which  can  exist. 
The  whole  volume  of  space  (determined  by  rigid  scales)  is  finite  and  equal 

to 

r^7rR-sm2X'Rdx  =  27r2R3      (67*2). 
Jo 

Although  the  volume  of  space  is  finite,  there  is  no  boundary ;  nor  is  there  any 

centre  of  spherical  space.  Every  point  stands  in  the  same  relation  to  the  rest 

of  space  as  every  other  point. 

To  obtain  de  Sitter's  form,  we  generalise  (6711)  to  four  dimensions  (i.e.  a 
spherical  four-dimensional  surface  drawn  in  Euclidean  space  of  five  dimensions). 
We  have  four  angular  variables  w,  £,  6,  <f>,  and 

-  ds2  =  R2  [dw2  +  sin2  &>  {d?  +  sin2  %(d&-  +  sin2  6d<f>-)}] . .  .(67-31). 

In  order  to  obtain  a  coordinate-system  whose  physical  interpretation  is  more 
easily  recognisable,  we  make  the  transformation 

cos  Q)  =  cos  x  cos  it, 

cot  £  =  cot  x  sni  l^> 
which  gives  sin  y  =  sin  t sin  w\ 
s  ?  b  \   (67-32). tan  it  =  cos  £  tan  w) 

Working  out  the  results  of  this  substitution,  we  obtain 

ds-  =  -  R*dx2  -  R2  sin2 %  (d62  +  sin2  OdQ2)  +  R2  cos2  x  •  dt2. .  .(67-33). 

So  far  as  space  (%,  6,  <f>)  is  concerned,  this  agrees  with  Einstein's  form 
(67-12);  but  the  variable  t,  which  will  be  regarded  as  the  'time"*  in  this 
world,  has  different  properties.    For  a  clock  at  rest  (x>  &,<]>  =  const.)  we  have 

ds  =  R  cos  xdt     (67-4), 

*  The  velocity  of  light  at  the  origin  is  dow  R.    In  the  usual  units  the  time  would  be  Rt. 
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so  that  the  "  time  "  of  any  cycle  is  proportional  to  sec  %.  The  clock-beats 
become  longer  and  longer  as  we  recede  from  the  origin ;  in  particular  the 
vibrations  of  an  atom  become  slower.  Moreover  we  can  detect  by  practical 
measurement  this  slowing  down  of  atomic  vibrations,  because  it  is  preserved 

in  the  transmission  of  the  light  to  us.  The  coordinates  (67 '33)  form  a  statical 
system,  the  velocity  of  light  being  independent  of  t ;  hence  the  light-pulses 

are  all  delayed  in  transmission  by  the  same  "time"  and  reach  us  at  the  same 
intervals  of  t  as  they  were  emitted.  Spectral  lines  emanating  from  distant 

sources  at  rest  should  consequently  appear  displaced  towards  the  red. 

At  the  "  horizon  "  %  =  -|7r,  any  finite  value  of  ds  corresponds  to  an  infinite 

dt.  It  takes  an  infinite  "  time  "  for  anything  to  happen.  All  the  processes  of 
nature  have  come  to  a  standstill  so  far  as  the  observer  at  the  origin  can  have 
evidence  of  them. 

But  we  must  recall  that  by  the  symmetry  of  the  original  formula  (67*31), 
any  point  of  space  and  time  could  be  chosen  as  origin  with  similar  results. 
Thus  there  can  be  no  actual  difference  in  the  natural  phenomena  at  the  horizon 

and  at  the  origin.  The  observer  on  the  horizon  does  not  perceive  the  stoppage 

— in  fact  he  has  a  horizon  of  his  own  at  a  distance  ̂ irR  where  things  appear 
to  him  to  have  come  to  a  standstill. 

Let  us  send  a  ray  of  light  from  the  origin  to  the  horizon  and  back  again. 

(We  take  the  double  journey  because  the  time-lapse  can  then  be  recorded  by 
a  single  clock  at  the  origin  ;  the  physical  significance  of  the  time  for  a  single 

journey  is  less  obvious.)    Setting  ds  =  0,  the  velocity  of  the  light  is  given  by 

0  =  -  R'dx2  +  R2  cos2  x  dt2, 

so  that  dt  =  ±  sec  %  d-%, 

whence  t  =  ±  log  tan  (\  it  +  |^)      (67*5). 
This  must  be  taken  between  the  limits  %  =  0  and  ̂ ir\  and  again  with  reversed 
sign  between  the  limits  ̂ ir  and  0.  The  result  is  infinite,  and  the  journey  can 

never  be  completed. 

De  Sitter  accordingly  dismisses  the  paradox  of  the  arrest  of  time  at  the 
horizon  with  the  remark  that  it  only  affects  events  which  happen  before  the 

beginning  or  after  the  end  of  eternity.  But  we  shall  discuss  this  in  greater 
detail  in  §  70. 

68.    Elliptical  space. 

The  equation  (6711)  for  spherical  space,  which  appears  in  both  de  Sitter's 
and  Einstein's  form  of  the  interval,  can  also  be  construed  as  representing  a 

slightly  modified  kind  of  space  called  "elliptical  space."  From  the  modem 
standpoint  the  name  is  rather  unfortunate,  and  does  not  in  any  way  suggest 

its  actual  nature.  We  can  approach  the  problem  of  elliptical  space  in  the 

following  way — 
Suppose  that  in  spherical  space  the  physical  processes  going  on  at  every 

point  are  exactly  the  same  as  those  going  on  at  the  antipodal  point,  so  that 
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one  half  of  the  world  is  an  exact  replica  of  the  other  half.  Let  ABA'B'  be 

four  points  90°  apart  on  a  great  circle.  Let  us  proceed  from  B' ,  via  A,  to  B; 
on  continuing  the  journey  along  BA'  it  is  impossible  to  tell  that  we  are  not 

repeating  the  journey  B'A  already  performed.  We  should  be  tempted  to  think 
that  the  arc  B'A  was  in  fact  the  immediate  continuation  of  AB,  B  and  B' 
being  the  same  point  and  only  represented  as  wide  apart  through  some  fault 

in  our  projective  representation — just  as  in  a  Mercator  Chart  we  see  the  same 
Behring  Sea  represented  at  both  edges  of  the  map.  We  may  leave  to  the 

metaphysicist  the  question  whether  two  objects  can  be  exactly  alike,  both 
intrinsically  and  in  relation  to  all  surroundings,  and  yet  differ  in  identity ; 

physics  has  no  conception  of  what  is  meant  by  this  mysterious  differentiation 

of  identity ;  and  in  the  case  supposed,  physics  would  unhesitatingly  declare 

that  the  observer  was  re-exploring  the  same  hemisphere. 

Thus  the  spherical  world  in  the  case  considered  does  not  consist  of  two 
similar  halves,  but  of  a  single  hemisphere  imagined  to  be  repeated  twice  over 

for  convenience  of  projective  representation.  The  differential  geometry  is  the 

same  as  for  a  sphere,  as  given  by  (67*11),  but  the  connectivity  is  different;  just 
as  a  plane  and  a  cylinder  have  the  same  differential  geometry  but  different 

connectivity.  At  the  limiting  circle  of  any  hemisphere  there  is  a  cross-con- 
nection of  opposite  ends  of  the  diameters  which  it  is  impossible  to  represent 

graphically;  but  that  is,  of  course,  no  reason  against  the  existence  of  the 
cross-connection. 

This  hemisphere  which  returns  on  itself  by  cross-connections  is  the  type 
of  elliptical  space.  In  what  follows  we  shall  not  need  to  give  separate  con- 

sideration to  elliptical  space.  It  is  sufficient  to  bear  in  mind  that  in  adopting 

spherical  space  we  may  be  representing  the  physical  world  in  duplicate;  for 

example,  the  volume  'Ztt-R*  already  given  may  refer  to  the  duplicated  world. 
The  difficulty  in  conceiving  spherical  or  elliptical  space  arises  mainly  be- 

cause we  think  of  space  as  a  continuum  in  which  objects  are  located.  But  it 

was  explained  in  §  1  that  location  is  not  the  primitive  conception,  and  is  of 

the  nature  of  a  computational  result  based  on  the  more  fundamental  notion 

of  extension  or  distance.  In  using  the  word  "space"  it  is  difficult  to  repress 
irrelevant  ideas;  therefore  let  us  abandon  the  word  and  state  explicitly  that 

we  are  considering  a  network  of  intervals  (or  distances,  since  at  present  we 
are  not  dealing  with  time).  The  relation  of  interval  or  distance  between  two 

points  is  of  some  transcendental  character  comparable,  for  example,  with  a 

difference  of  potential  or  with  a  chemical  affinity ;  the  reason  why  this  par- 
ticular relation  is  always  associated  with  geometrical  ideas  must  be  sought  in 

human  psychology  rather  than  in  its  intrinsic  nature.  We  apply  measure- 
numbers  to  the  interval  as  we  should  apply  them  to  any  other  relation  of  the 

two  points;  and  we  thus  obtain  a  network  with  a  number  attached  to  every 

chord  of  the  net.  We  could  then  make  a  string  model  of  the  network,  the 

length  of  each  string  corresponding  to  the  measure-number  of  the  interval. 



68,69  ELLIPTICAL  SPACE  159 

Clearly  the  form  of  this  model — the  existence  or  non-existence  of  unexpected 
cross-connections — cannot  be  predicted  a  priori ;  it  must  be  the  subject  of 
observation  and  experiment.  It  may  turn  out  to  correspond  to  a  lattice  drawn 

by  the  mathematician  in  a  Euclidean  space ;  or  it  may  be  cross-connected  in 

a  way  which  cannot  be  represented  in  a  lattice  of  that  kind.  Graphical  repre- 
sentation is  serviceable  as  a  tool  but  is  dangerous  as  an  obsession.  If  we  can 

find  a  graphical  representation  which  conforms  to  the  actual  character  of  the 

network,  we  may  employ  it ;  but  we  must  not  imagine  that  any  considerations 

as  to  suitability  for  graphical  representation  have  determined  the  design  of 
the  network.  From  experience  we  know  that  small  portions  of  the  network 

do  admit  of  easy  representation  as  a  lattice  in  flat  space,  just  as  small  portions 

of  the  earth's  surface  can  be  mapped  on  a  flat  sheet.  It  does  not  follow  that 
the  whole  earth  is  flat,  or  that  the  whole  network  can  be  represented  in  a 

space  without  multiple  connection. 

69.    Law  of  gravitation  for  curved  space-time. 

By  means  of  the  results  (43*5)  the  G^  can  be  calculated  for  either  Einstein's 
or  de  Sitter's  forms  of  the  world.  De  Sitter's  equation  (67*33)  is  of  the  standard 
form  with  x  substituted  for  r,  and 

eA  =  R2,     e>L  =  R2  sin2  x/x2,     e"  =  &2  cos2  x, 

thus  V  =  0,     (i  =  2  cot  x  ~  2/x,     v'=-2  tan  x, 

ji"  =  —  2  cosec2  x  +  2/x2,     v"  =  —2  sec2  x. 

Hence  by  (43*5)  we  find  after  an  easy  reduction 

Gn  =  -S,     G22=-3sin2x,     G,,  =  -  3  sin2 x  sin2  6,     Gu  =  3  cos2 x. 
These  are  equivalent  to 

;  Q*-jp9~    (69-11)- 

De  Sitter's  world  thus  corresponds  to  the  revised  form  of  the  law  of  gravitation 

3 

and  its  radius  is  given  by  A.  =  -^      (691 2). 

Einstein's  form  (67*12)  gives  similarly 
eK  =  R\     e*  =  R2  sin2  xlx*>     e"  =  1, 

from  which  by  (43*5) 

Gn  =  -2,    G22  =  -2sin2x,    Gas  =  -  2  sin-  x  sin2  0,    G«  =  0  ...(69-21), 
G  =  ti/R2   (6922). 

It  is  not  possible  to  reconcile  these  values  with  the  law  G^v  =  X^M„,  owing  to 

the  vanishing  of  6r44.  Einstein's  form  cannot  be  the  natural  form  of  empty 
space ;  but  it  may  nevertheless  be  the  actual  form  of  the  world  if  the  matter 

in  the  world  is  suitably  distributed.  To  determine  the  necessary  distribution 

we  must  calculate  the  energy- tensor  (54*71) 
—  8-7T  T^  =  G>„  —  {g^G  +  X^ 

/fiv 
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We  find  -  8tt  Tu  =  (-  jg  +  \j  gu 

-  8tt  T„  =  (-  jg  +  XJ  ga 

-87rTu=(-^  +  \^g4iJ 

Since  X  is  still  at  our  disposal,  the  distribution  of  this  energy-tensor  is  inde- 
terminate. But  it  is  noted  that  within  the  stellar  system  the  speed  of  matter, 

whether  of  molecules  or  of  stars,  is  generally  small  compared  with  the  velocity 

of  light.  There  is  perhaps  a  danger  of  overstressing  this  evidence,  since  astro- 
nomical research  seems  to  show  that  the  greater  the  scale  of  our  exploration 

the  more  divergent  are  the  velocities;  thus  the  spiral  nebulae,  which  are 

perhaps  the  most  remote  objects  observed,  have  speeds  of  the  order  500  km. 

per  sec. — at  least  ten  times  greater  than  the  speeds  observed  in  the  stellar 
system.  It  seems  possible  that  at  still  greater  distances  the  velocities  may 

increase  further.  However,  in  Einstein's  solution  we  assume  that  the  average 
velocity  of  the  material  particles  is  always  small  compared  with  the  velocity 
of  light ;  so  the  general  features  of  the  world  correspond  to 

Tn  =  T.2,  =  T-,Vi  =  0,     Tu  =  p,     T  =  p0 , 

where  pQ  is  the  average  density  (in  natural  measure)  of  the  matter  in  space. 

Hence  by  (69-3)  X  =  ̂>        8'7r/t,o  =  ̂    (69"4). 

Accordingly  if  M  is  the  total  mass  in  the  universe,  we  have  by  (67*2) M=2ir2Ry0 

=  hirR   (69-5). 

R  can  scarcely  be  less  than  1018  kilometres  since  the  distances  of  some  of  the 
globular  clusters  exceed  this.  Remembering  that  the  gravitational  mass  of 

the  sun  is  1'5  kilometres,  the  mass  of  the  matter  in  the  world  must  be  equi- 
valent to  at  least  a  trillion  suns,  if  Einstein's  form  of  the  world  is  correct. 

It  seems  natural  to  regard  de  Sitter's  and  Einstein's  forms  as  two  limiting 
cases,  the  circumstances  of  the  actual  world  being  intermediate  between  them. 

De  Sitter's  empty  world  is  obviously  intended  only  as  a  limiting  case ;  and 
the  presence  of  stars  and  nebulae  must  modify  it,  if  only  slightly,  in  the 

direction  of  Einstein's  solution.  Einstein's  world  containing  masses  far  ex- 
ceeding anything  imagined  by  astronomers,  might  be  regarded  as  the  other 

extreme — a  world  containing  as  much  matter  as  it  can  hold.  This  view  denies 
any  fundamental  cleavage  of  the  theory  in  regard  to  the  two  forms,  regarding 

it  as  a  mere  accident,  depending  on  the  amount  of  matter  which  happens  to 

have  been  created,  whether  de  Sitter's  or  Einstein's  form  is  the  nearer  ap- 
proximation to  the  truth.  But  this  compromise  has  been  strongly  challenged, 

as  we  shall  see. 
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70.    Properties  of  de  Sitter's  spherical  world. 

If  in  (67-33)  we  write r  —  it  sin  %, 

we  obtain  ds2  =  -  y-'dr-  -  r2d02  -  ?•'-'  sin2  ddjr  +  ydt2  \ 
where  7=1-  r2/R2  =  1  -  £  \r2  J 

and  the  customary  unit  of  t  has  been  restored.    This  solution  for  empty  space 

has  already  been  given,  equation  (45"6). 
We  have  merely  to  substitute  this  value  of  7  in  the  investigations  of 

§§  38,  39,  in  order  to  obtain  the  motion  of  material  particles  and  of  light-waves 

in  de  Sitter's  empty  world.    Thus  (39*3 1)  may  be  written 
d2r     1  y  (dr\2  fd<f>\2      .      ,  (dt\2      _ 

Whence 

d2r  iXr      fdr\2        ,,      ,„   mJdd>\*      _     ,-      _    n.(dt 
77  =  -  r-3^ — -  ( -7-     +  r  (1  -  AXr2)    -7^     +  \\r  (1  -  i*.r")    -r- 
ds2  l-%\r2\ds)         v        3      '\dsj       *      v        3      '  W* 

  (70-21). 
For  a  particle  at  rest 

dr  =  Q      #  =  0      (^Y^    -1 
ds        '      c?s        '     \ds/ 

Hence  ^  =  i\r   (70-22). 

Thus  a  particle  at  rest  will  not  remain  at  rest  unless  it  is  at  the  origin ; 
but  will  be  repelled  from  the  origin  with  an  acceleration  increasing  with  the 

distance.  A  number  of  particles  initially  at  rest  will  tend  to  scatter,  unless 
their  mutual  gravitation  is  sufficient  to  overcome  this  tendency. 

It  can  easily  be  verified  that  there  is  no  such  tendency  in  Einstein's  world. 
A  particle  placed  anywhere  will  remain  at  rest.  This  indeed  is  necessary  for 

the  self-consistency  of  Einstein's  solution,  for  he  requires  the  world  to  be 
filled  with  matter  having  negligible  velocity.  It  is  sometimes  urged  against 

de  Sitter's  world  that  it  becomes  non-statical  as  soon  as  any  matter  is  inserted 

in  it.  But  this  property  is  perhaps  rather  in  favour  of  de  Sitter's  theory  than 
against  it. 

One  of  the  most  perplexing  problems  of  cosmogony  is  the  great  speed  of 
the  spiral  nebulae.  Their  radial  velocities  average  about  600  km.  per  sec.  and 
there  is  a  great  preponderance  of  velocities  of  recession  from  the  solar  system. 
It  is  usually  supposed  that  these  are  the  most  remote  objects  known  (though 

this  view  is  opposed  by  some  authorities),  so  that  here  if  anywhere  we  might 

look  for  effects  due  to  a  general  curvature  of  the  world.  De  Sitter's  theory 
gives  a  double  explanation  of  this  motion  of  recession;  first,  there  is  the 

general  tendency  to  scatter  according  to  equation  (70*22);  second,  there  is 
the  general  displacement  of  spectral  lines  to  the  red  in  distant  objects  due  to 

the  slowing  down  of  atomic  vibrations  (67-4)  which  would  be  erroneously  in- 
terpreted as  a  motion  of  recession. 
B.  11 
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The  most  extensive  measurements  of  radial  velocities  of  spiral  nebulae 

have  been  made  by  Prof.  V.  M.  Slipher  at  the  Lowell  Observatory.  He  has 

kindly  prepared  for  me  the  following  table,  containing  many  unpublished 
results.  It  is  believed  to  be  complete  up  to  date  (Feb.  1922).  For  the  nebulae 

marked  (*)  the  results  have  been  closely  confirmed  at  other  observatories; 
those  marked  (f )  are  not  so  accurate  as  the  others.  The  number  in  the  first 

column  refers  to  the  "New  General  Catalogue,"  Memoirs  B.A.S.,  vol.  49.  One 
additional  nebula  n.g.c.  1700  has  been  observed  by  Pease,  who  found  a  large 

receding  velocity  but  gave  no  numerical  estimate. 

Radial  Velocities  of  Spiral  Nebulae 

+  indicates  receding,   —  approaching 

N.  G.  C. K.  A. Dec. Ra i.  Vel. N.G.C. 
K.A. 

Dec. 
Bad.  Vel. 

h   m O     / 
kru. 

per  sec. 

h     m O     f km.  per  sec 
221 0  38 +  40  26 — 300 

4151* 

12  6 

+  39  51 
+  980 

224* 

0  38 
+  40  50 

— 
300 4214 12  12 

+  36  46 
+  300 

278t 0  47 
+  47  7 + 650 4258 

12  15 

+  47  45 +  500 404 1  5 +  35  17 
— 25 4382+ 12  21 

+  18  38 
+  500 

584t 1  27 
-  7  17 

+  1800 

4449 12  24 
+  44  32 +  200 

598* 

1  29 
+  30  15 

— 
260 4472 12  25 

+  8  27 +  850 936 2  24 
-  1  31 

+ 1300 

4486+ 12  27 

+  12  50 
+  800 

1023 2  35 
+  38  43 

+ 300 4526 12  30 

+  89 +  580 
1068* 

2  39 
-  0  21 

+  1120 
4565+ 12  32 

+  26  26 +  1100 2683 8  48 
+  33  43 + 400 

4594* 

12  36 

-11  11 

+  1100 2841+ 9  16 +  51  19 + 600 4649 12  40 
+  12  0 +  1090 3031 9  49 +  69  27 

— 

30 
4736 12  47 

+  41  33 
+  290 

3034 9  49 +  70  5 + 290 4826 12  53 
+  22  7 

+  150 
3115+ 10  1 

-  7  20 
+ 600 5005 13  7 

+  37  29 
+  900 3368 10^2 +  12  14 + 940 

5055 13  12 +  42  37 

+  450 
3379* 

10  43 +  13  0 + 780 
5194 13  26 

+  47  36 +  270 3489+ 10  56 +  14  20 + 600 
5195+ 13  27 

+  47  41 +  240 3521 11  2 +  0  24 + 730 
5236+ 13  32 

-29  27 

+  500 3623 11  15 +  13  32 + 800 5866 15  4 
+  56  4 

+  650 
3627 11  16 

+  13  26 
+ 650 7331 22  33 

+  33  23 

+  500 
4111  + 12  3 +  43  31 + 800 

The  great  preponderance  of  positive  (receding)  velocities  is  very  striking; 
but  the  lack  of  observations  of  southern  nebulae  is  unfortunate,  and  forbids  a 

final  conclusion.  Even  if  these  also  show  a  preponderance  of  receding  veloci- 

ties the  cosinogonical  difficulty  is  perhaps  not  entirely  removed  by  de  Sitter's 
theory.  It  will  be  seen  that  two  j  nebulae  (including  the  great  Andromeda 

nebula)  are  approaching  with  rather  high  velocity  and  these  velocities  happen 
to  be  exceptionally  well  determined.  In  the  full  formula  (7021)  there  are  no 

terms  which  under  any  reasonable  conditions  encourage  motion  towards  the 

origin§.  It  is  therefore  difficult  to  account  for  these  motions  even  as  excep- 
tional phenomena ;  on  the  other  hand  an  approaching  velocity  of  300  km.  per 

sec.  is  about  the  limit  occasionally  attained  by  individual  stars  or  star  clusters. 

X  n.g.c.  221  and  224  may  probably  be  counted  as  one  system.    The  two  approaching  nebulae 
are  the  largest  spirals  in  the  sky. 

§  We  are  limited  to  the  region  in  which  (1  -  ̂   \r2)  is  positive  since  light  cannot  cross  the  barrier. 
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The  conservation  of  energy  is  satisfied  in  de  Sitter's  world ;  but  from  the 
practical  standpoint  it  is  abrogated  in  large  scale  problems  such  as  that  of 
the  system  of  the  spirals,  since  these  are  able  to  withdraw  kinetic  energy 

from  a  source  not  generally  taken  into  account. 

Equation  (39-44)  _(-_)+---  =  - 1 

becomes  on  substituting  for  7 

t,  fdu\*       .     e2-l      _       X\ 
or  writing  u  =  1/r  [^)  +  u-  =  -^  -  £X  +  ̂  . 

Whence,  differentiating 

S+— ^   <70'3»- 
The  orbit  is  the  same  as  that  of  a  particle  under  a  repulsive  force  varying 

directly  as  the  distance.  (This  applies  only  to  the  form  of  the  orbit,  not  to 

the  velocity  in  the  orbit.)  For  the  motion  of  light  the  constant  of  areas  h  is 

infinite,  and  the  tracks  of  light-rays  are  the  solutions  of 
dhi  _ 

i.e.  straight  lines.  Determination  of  distance  by  parallax-measurements  rests 
on  the  assumption  that  light  is  propagated  in  straight  lines,  and  hence  the 
method  is  exact  in  this  system  of  coordinates.  In  so  far  as  the  distances  of 

celestial  objects  are  determined  by  parallaxes  or  parallactic  motions,  the 
coordinate  r  will  agree  with  their  accepted  distances.  This  result  may  be 

contrasted  with  the  solution  for  the  field  of  a  particle  in  §  38  where  the  coordi- 

nate r  has  no  immediate  observational  significance.  Radial  distances  deter- 

mined by  direct  operations  with  measuring-rods  correspond  to  R%,  not  r. 
The  spectroscopic  radial  velocity  is  not  exactly  equivalent  to  drjdt,  but 

the  divergence  is  unimportant.  A  pulse  of  light  emitted  by  an  atom  situated 

at  r  =  R  sin  %  at  time  t  will  reach  the  observer  at  the  origin  at  time  t',  where 

by  (67-5) 
£'  =  £+logtan(J7r  +  Jx)> 

so  that  for  the  time-interval  between  two  pulses 

dt'  =  dt  +  sec^c?^ 

=  (sec  x  +  sec-  X  ̂£)  ds>         b^  (67'33) 

11—2 



164  PROPERTIES  OF  DE  SITTERS  SPHERICAL  WORLD  CH.  V 

neglecting  the  square  of  the  velocity  of  the  atom.    If  dt0'  is  the  time  for  a similar  atom  at  rest  at  the  origin, 

_  =  sec%  +  sec2X^ 

L  civ 

=  sec  x  +  sec3  %  -^  ̂      (70-4). 

The  first  term  represents  the  general  shift  to  the  red  dependent  on  position 

and  not  on  velocity.    Assuming  that  it  has  been  allowed  for,  the  remaining 
dv  ctv 

part  of  the  shift  corresponds  to  a  velocity  of  sec3  X  ~jl  instead  of  -=- .    The 

correction  is  scarcely  of  practical  importance. 

The  acceleration  %\r  found  in  (7022),  if  continued  for  the  time  Rx  taken 

by  the  light  from  the  object  to  reach  the  origin,  would  cause  a  change  of 

velocity  of  the  order  ̂ -Ar2  or  r2jR2.  The  Doppler  effect  of  this  velocity  would 
be  roughly  the  same  as  the  shift  to  the  red  caused  by  the  slowing  down  of 
atomic  vibrations.  We  may  thus  regard  the  red  shift  for  distant  objects  at 

rest  as  an  anticipation  of  the  motion  of  recession  which  will  have  been  attained 

before  we  receive  the  light.  If  de  Sitter's  interpretation  of  the  red  shift  in 
the  spiral  nebulae  is  correct,  we  need  not  regard  the  deduced  large  motions 
of  recession  as  entirely  fallacious ;  it  is  true  that  the  nebulae  had  not  these 

motions  when  they  emitted  the  light  which  is  now  examined,  but  they  have 

acquired  them  by  now.  Even  the  standing  still  of  time  on  the  horizon  becomes 

intelligible  from  this  point  of  view ;  we  are  supposed  to  be  observing  a  system 
which  has  noiu  the  velocity  of  light,  having  acquired  it  during  the  infinite 
time  which  has  elapsed  since  the  observed  light  was  emitted. 

The  following  paradox  is  sometimes  found  puzzling.  Take  coordinates  for 
an  observer  A  at  rest  at  the  origin,  and  let  B  be  at  rest  at  the  time  t  at  a 

considerable  distance  from  the  origin.  The  vibrations  of  an  atom  at  B  are 
slower  (as  measured  in  the  time  t)  than  those  of  an  atom  at  A,  and  since  the 

coordinate-system  is  static  this  difference  will  be  detected  experimentally  by 
any  observer  who  measures  the  frequency  of  the  light  he  receives.  Accordingly 
B  must  detect  the  difference,  and  conclude  that  the  light  from  A  is  displaced 

towards  the  violet  relatively  to  his  standard  atom.  This  is  absurd  since,  if  we 

choose  B  as  origin,  the  light  from  A  should  be  displaced  towards  the  red.  The 

fallacy  lies  in  ignoring  what  has  happened  during  the  long  time  of  propaga- 
tion from  A  to  B  or  B  to  A  ;  during  this  time  the  two  observers  have  ceased 

to  be  in  relative  rest,  so  that  compensating  Doppler  effects  are  superposed. 

To  obtain  a  clearer  geometrical  idea  of  de  Sitter's  world,  we  consider  only 

one  dimension  of  space,  neglecting  the  coordinates  6  and  <f>.    Then  by  (67*31) 

-  ds2  =  R2  (do2  +  sin2  a>  d?)  =  R2  (dx2  -  cos2  xdt2) 

=  dx2  +  dif  +  dz2, 
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where  x  —  R  sin  co  cos  £  =  R  cos  ̂   sin  it, 

1/  =  R  sin  co  sin  £  =  R  sin  % 

z  =  R  cos  a)  =  R  cos  x  cos  t'6, 

and  x2  +  y-  +  z-  =  i22. 

It  will  be  seen  that  real  values  of  ̂   and  t  correspond  to  imaginary 
values  of  co  and  £  and  accordingly  for  real  events  x  is  imaginary  and  y  and 

z  are  real.  Introducing  a  real  coordinate  £  =  —  ice,  real  space-time  will  be 
represented  by  the  hyperboloid  of  one  sheet  with  its  axis  along  the  axis  of  £, 

7f  +  Z1  _  |2  =  #2j 

the  geometry  being  of  the  Galilean  type 

ds-  =  d|-  -  cZj/2  -  dz\ 

We  have  r  =  R  sin  ̂   =  y, 

tanh  t=  —  i  tan  i£  =  —  i#/,z  =  £/#, 

so  that  the  space-partitions  are  made  by  planes  perpendicular  to  the  axis  of 

y,  and  the  time-partitions  by  planes  through  the  axis  of  y  cutting  the  hyper- 
boloid into  lunes. 

The  light-tracks,  ds  =  0,  are  the  generators  of  the  hyperboloid.  The  tracks 

of  undisturbed  particles  are  (non-Euclidean)  geodesies  on  the  hyperboloid ; 

and,  except  for  y  =  0,  the  space-partitions  will  not  be  geodesies,  so  that 
particles  do  not  remain  at  rest. 

The  coordinate-frame  (r,  t)  of  a  single  observer  does  not  cover  the  whole 

world.  The  range  from  t  =  —  oo  to  t  =  +  oo  corresponds  to  values  of  g/z 
between  +  1.  The  whole  experience  of  any  one  observer  of  infinite  longevity 

is  comprised  within  a  90°  lune.  Changing  the  origin  we  can  have  another 
observer  whose  experience  covers  a  different  lune.  The  two  observers  cannot 

communicate  the  non-overlapping  parts  of  their  experience,  since  there  are 

no  light-tracks  (generators)  taking  the  necessary  course. 

A  further  question  has  been  raised,  Is  de  Sitter's  world  really  empty  ?  In 
formula  (70'1)  there  is  a  singularity  at  r  =  \f(3/\)  similar  to  the  singularity 
at  r  =  2?n  in  the  solution  for  a  particle  of  matter.  Must  Ave  not  suppose  that 

the  former  singularity  also  indicates  matter — a  "  mass-horizon  "  or  ring  of 
peripheral  matter  necessary  in  order  to  distend  the  empty  region  within.  If 

so,  it  would  seem  that  de  Sitter's  world  cannot  exist  without  large  quantities 

of  matter  any  more  than  Einstein's ;  he  has  merely  swept  the  dust  away  into 
unobserved  corners. 

A  singularity  of  ds"  does  not  necessarily  indicate  material  particles,  for 
we  can  introduce  or  remove  such  singularities  by  making  transformations  of 

coordinates.  It  is  impossible  to  know  whether  to  blame  the  world-structure 

or  the  inappropriateness  of  the  coordinate-system.  In  a  finite  region  we  avoid 

this  difficulty  by  choosing  a  coordinate-system  initially  appropriate — how  this 
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is  done  is  very  little  understood — and  permitting  only  transformations  which 

have  no  singularity  in  the  region.  But  we  can  scarcely  apply  this  to  a 

consideration  of"  the  whole  finite  world  since  all  the  ordinary  analytical  trans- 
formations (even  a  change  of  origin)  introduce  a  singularity  somewhere.  If 

de  Sitter's  form  for  an  empty  world  is  right  it  is  impossible  to  find  any 

coordinate-system  which  represents  the  whole  of  real  space-time  regularly. 
This  is  no  doubt  inconvenient  for  the  mathematician,  but  I  do  not  see  that 

the  objection  has  any  other  consequences. 

The  whole  of  de  Sitter's  world  can  be  reached  by  a  process  of  continuation  ; 
that  is  to  say  the  finite  experience  of  an  observer  A  extends  over  a  certain 
lime  ;  he  must  then  hand  over  the  description  to  B  whose  experience  is  partly 

overlapping  and  partly  new ;  and  so  on  by  overlapping  lunes.  The  equation 

Q  =  Xg^v  rests  on  the  considerations  of  §  66,  and  simply  by  continuation  of 

this  equation  from  point  to  point  we  arrive  at  de  Sitter's  complete  world 
without  encountering  any  barrier  or  mass-horizon. 

A  possible  indication  that  there  is  no  real  mass  in  de  Sitter's  world  is 
afforded  by  a  calculation  of  the  gravitational  flux  (63"4).    By  (63"6)  this  is 

47rr2  (—Sy   ■  By)  dt, 

since  dt  can  no  longer  be  replaced  by  ds.  On  substituting  for  7  it  is  found 
that  the  flux  vanishes  for  all  values  of  r.  It  is  true  that  as  we  approach  the 

boundary  dt/ds  becomes  very  great,  but  the  complete  absence  of  flux  right  up 

to  the  boundary  seems  inconsistent  with  the  existence  of  a  genuine  mass- 
horizon. 

I  believe  then  that  the  mass-horizon  is  merely  an  illusion  of  the  observer 

at  the  origin,  and  that  it  continually  recedes  as  we  move  towards  it. 

71.    Properties  of  Einstein's  cylindrical  world. 

Einstein  does  not  regaixl  the  relation  (69'5) 

M  =  ±irR  =  \Tr\-*      (711) 
as  merely  referring  to  the  limiting  case  when  the  amount  of  matter  in  the 

world  happens  to  be  sufficient  to  make  the  form  cylindrical.  He  considers  it 

to  be  a  necessary  relation  between  A,  and  M;  so  that  the  constant  X  occurring 

in  the  law  of  gravitation  is  a  function  of  the  total  mass  of  matter  in  the  world, 

and  the  volume  of  space  is  conditioned  by  the  amount  of  matter  contained 
in  it. 

The  question  at  once  arises,  By  what  mechanism  can  the  value  of  X  be 

adjusted  to  correspond  with  if?  The  creation  of  a  new  stellar  system  in  a 

distant  part  of  the  world  would  have  to  propagate  to  us,  not  merely  a  gravi- 
tational field,  but  a  modification  of  the  law  of  gravitation  itself.  We  cannot 

trace  the  propagation  of  any  such  influence,  and  the  dependence  of  X  upon 
distant  masses  looks  like  sheer  action  at  a  distance. 
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But  the  suggestion  is  perhaps  more  plausible  if  we  look  at  the  inverse 

relation,  viz.  31  as  a  function  of  A..  If  we  can  imagine  the  gradual  destruction 

of  matter  in  the  world  (e.g.  by  coalescence  of  positive  and  negative  electrons), 
we  see  by  (7T1)  that  the  radius  of  space  gradually  contracts;  but  it  is  not 

clear  what  is  the  fixed  standard  of  length  by  which  R  is  supposed  to  be 
measured.  The  natural  standard  of  length  in  a  theoretical  discussion  is  the 

radius  R  itself.  Choosing  it  as  unit,  we  have  M=\tt,  whatever  the  number 

of  elementary  particles  in  the  world.  Thus  with  this  unit  the  mass  of  a  particle 

must  be  inversely  proportional  to  the  number  of  particles.  Now  the  gravi- 
tational mass  is  the  radius  of  a  sphere  which  has  some  intimate  relation  to 

the  structure  of  the  particle ;  and  we  must  conclude  that  as  the  destruction 

of  particles  proceeds,  this  sphere  must  swell  up  as  though  some  pressure  were 

being  relaxed.  We  might  try  to  represent  this  pressure  by  the  gravitational 
flux  (§  63)  which  proceeds  from  every  particle ;  but  I  doubt  whether  that 

leads  to  a  satisfactory  solution.  However  that  may  be,  the  idea  that  the 

particles  each  endeavour  to  monopolise  all  space,  and  restrain  one  another  by 
a  mutual  pressure,  seems  to  be  the  simplest  interpretation  of  (711)  if  it  is  to 
be  accepted. 

We  do  not  know  whether  the  actual  (or  electrical)  radius  of  the  particle 

would  swell  in  the  same  proportion — by  a  rough  guess  I  should  anticipate 
that  it  would  depend  on  the  square  root  of  the  above  ratio.  But  this  radius, 

on  which  the  scale  of  ordinary  material  standards  depends,  has  nothing  to  do 

with  equation  (71-1) ;  and  if  we  suppose  that  it  remains  constant,  the  argu- 
ment of  §  66  need  not  be  affected. 

In  favour  of  Einstein's  hypothesis  is  the  fact  that  among  the  constants  of 
nature  there  is  one  which  is  a  very  large  pure  number;  this  is  typified  by  the 

ratio  of  the  radius  of  an  electron  to  its  gravitational  mass  —  3  .  1042.  It  is  diffi- 
cult to  account  for  the  occurrence  of  a  pure  number  (of  order  greatly  different 

from  unity)  in  the  scheme  of  things;  but  this  difficulty  would  be  removed  if 

we  could  connect  it  with  the  number  of  particles  in  the  world — a  number 

presumably  decided  by  pure  accident*.  There  is  an  attractiveness  in  the 
idea  that  the  total  number  of  the  particles  may  play  a  part  in  determining 

the  constants  of  the  laws  of  nature ;  we  can  more  readily  admit  that  the  laws 

of  the  actual  world  are  specialised  by  the  accidental  circumstance  of  a  par- 
ticular number  of  particles  occurring  in  it,  than  that  they  are  specialised  by 

the  same  number  occurring  as  a  mysterious  ratio  in  the  fine-grained  structure 
of  the  continuum. 

In  Einstein's  world  one  direction  is  uncurved  and  this  gives  a  kind  of 
absolute  time.  Our  critic  who  has  been  waiting  ever  since  §  1  with  his  blank 

label  "  true  time  "  will  no  doubt  seize  this  opportunity  of  affixing  it.    More- 

*  The  square  of  3  .  104-  might  well  be  of  the  same  order  as  the  total  number  of  positive  and 
negative  electrons.  The  corresponding  radius  is  1014  parsecs.  But  the  result  is  considerably 
altered  if  we  take  the  proton  instead  of  the  electron  as  the  more  fundamental  structure. 
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over  absolute  velocity  is  to  some  extent  restored,  for  there  is  by  hypothesis  a 

frame  of  reference  with  respect  to  which  material  bodies  on  the  average  have 

only  small  velocities.  Matter  is  essential  to  the  existence  of  a  space-time 

frame  according  to  Einstein's  view ;  and  it  is  inevitable  that  the  space-time 
frame  should  become  to  some  extent  materialised,  thereby  losing  some  of  the 

valuable  elusiveness  of  a  purely  aetherial  frame.  It  has  been  suggested  that 

since  the  amount  of  matter  necessary  for  Einstein's  world  greatly  exceeds  that 
known  to  astronomers,  most  of  it  is  spread  uniformly  through  space  and  is 

undetectable  by  its  uniformity.  This  is  dangerously  like  restoring  a  crudely 

material  aether — regulated,  however,  by  the  strict  injunction  that  it  must  on 
no  account  perform  any  useful  function  lest  it  upset  the  principle  of  relativity. 
We  may  leave  aside  this  suggestion,  which  creates  unnecessary  difficulties. 

I  think  that  the  matter  contemplated  in  Einstein's  theory  is  ordinary  stellar 
matter.  Owing  to  the  irregularity  of  distribution  of  stars,  the  actual  form  of 

space  is  not  at  all  a  smooth  sphere,  and  the  formulae  are  only  intended  to  give 

an  approximation  to  the  general  shape. 
The  Lorentz  transformation  continues  to  hold  for  a  limited  region.  Since 

the  advent  of  the  general  theory,  it  has  been  recognised  that  the  special  theory 

only  applies  to  particular  regions  where  the  g^  can  be  treated  as  constants,  so 

that  it  scarcely  suffers  by  the  fact  that  it  cannot  be  applied  to  the  whole 

domain  of  spherical  space.  Moreover  the  special  principle  is  now  brought  into 

line  with  the  general  principle.  The  transformations  of  the  theory  of  relativity 
relate  to  the  differential  equations  of  physics ;  and  our  tendency  to  choose 

simple  illustrations  in  which  these  equations  are  integrable  over  the  whole  of 

space-time  (as  simplified  in  the  mathematical  example)  is  responsible  for  much 
misconception  on  this  point. 

The  remaining  features  of  Einstein's  world  require  little  comment.  His 

spherical  space  is  commonplace  compared  with  de  Sitter's.  Each  observer's 
coordinate-system  covers  the  whole  world ;  so  that  the  fields  of  their  finite 
experience  coincide.  There  is  no  scattering  force  to  cause  divergent  motions. 

Light  performs  the  finite  journey  round  the  world  in  a  finite  time.  There  is 

no  passive  "  horizon,"  and  in  particular  no  mass-horizon,  real  or  fictitious. 

Einstein's  world  offers  no  explanation  of  the  red  shift  of  the  spectra  of  distant 
objects;  and  to  the  astronomer  this  must  appear  a  drawback.  For  this  and 

other  reasons  I  should  be  inclined  to  discard  Einstein's  view  in  favour  of 

de  Sitter's,  if  it  were  not  for  the  fact  that  the  former  appears  to  offer  a  distant 
hope  of  accounting  for  the  occurrence  of  a  very  large  pure  number  as  one  of 
the  constants  of  nature. 

72.    The  problem  of  the  homogeneous  sphere. 

For  comparison  with  the  results  for  naturally  curved  space,  we  consider  a 

problem  in  which  the  curvature  is  due  to  the  presence  of  ordinary  matter. 

The  problem  of  determining  ds2  at  points  within  a  sphere  of  fluid  of  uniform 
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density  has    been    treated    by  Schwarzschild,  Nordstrom    and    de    Donder. 

Schwarzschild's  solution*  is 

ds-  =  -  exdr-  -  r2d02  -  r-  sin2  Odxji"-  +  evdt-, 

where  eK  =  1/(1  —  a?*2) 

.(72-2). 

e"  =  ̂ (3V(l-aa2)-V(l-«/-2))2J      (        ̂ 
and  a  and  a  are  constants. 

The  formulae  (46'9),  which  apply  to  this  form  of  ds,  become  on  raising  one 
suffix 

-  8tt?V  =  e-v  (v'/r  -  (eK  -  l)/r2) 

-  8irT2*  =  e~K(\v" -  \Xv'  +  \v'*  +  i 
-  8ttTs3  =  -  8irT<r 

-  8-ttT*  =  <rx  (-  X'fr  -  (eK  -  l)/r2) 

We  find  from  (7  21)  that 

(^-l)/r2=n'/r;     \v"  -  \Xv'  +  |zA=  W/r. 

Hence  Tx*  =  T£  =  Ts*  =  ~  e~K  U\'  -  v')jr   (72-31), 
07T 

2!,*=^-e-x.f\7r  =  3a/87r      (72-32). 

Referred  to  the  coordinate-system  (r,  0,  </>),  T7,4  represents  the  density  and 

2V,  T2-,  T33  the  stress-system.  Hence  Schwarzschild's  solution  gives  uniform 
density  and  isotropic  hydrostatic  pressure  at  every  point. 

On  further  working  out  (72-31),  we  find  that  the  pressure  is 

« Iio^^-io^^    87r{3(1_aa2)*_£(i_ara)4j 

We  see  that  the  pressure  vanishes  at  r  =  a,  and  would  become  negative  if 

we  attempted  to  continue  the  solution  beyond  r  =  a.  Hence  the  sphere  r  =  a 
gives  the  boundary  of  the  fluid.  If  it  is  desired  to  continue  the  solution  out- 

side the  sphere,  another  form  of  ds2  must  be  taken  corresponding  to  the 
equations  for  empty  space. 

Unless  a  >  V(8/9a)  the  pressure  will  everywhere  be  finite.  This  condition 

sets  an  upper  limit  to  the  possible  size  of  a  fluid  sphere  of  given  density.  The 
limit  exists  because  the  presence  of  dense  matter  increases  the  curvature  of 

space,  and  makes  the  total  volume  of  space  smaller.  Clearly  the  volume  of  the 

material  sphere  cannot  be  larger  than  the  volume  of  space. 

*  Schwarzschild's  solution  is  of  considerable  interest ;  but  I  do  not  think  that  he  solved  exactly 
the  problem  which  he  intended  to  solve,  viz.  that  of  an  incompressible  fluid.  For  tbat  reason  1  do 

not  give  the  arguments  which  led  to  the  solution,  but  content  myself  with  discussing  what  dis- 
tribution of  matter  his  solution  represents.  A  full  account  is  given  by  de  Donder,  La  Qravifique 

Eimtf.'nnennc,  p.  169  (Gauthier-Villars,  1921).  The  original  gravitational  equations  are  used,  the 
natural  curvature  of  space  being  considered  negligible  compared  with  that  superposed  by  the 
material  sphere. 
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For  spheres  which  are  not  unduly  large  (e.g.  not  much  larger  than  the 

stars)  this  solution  corresponds  approximately  to  the  problem  of  the  equi- 
librium of  an  incompressible  fluid.    The  necessary  conditions  are  satisfied,  viz. 

(1)  The  density  is  uniform. 
(2)  The  pressure  is  zero  at  the  surface. 

(3)  The  stress-system  is  an  isotropic  hydrostatic  pressure,  and  therefore 
satisfies  the  conditions  of  a  perfect  fluid. 

(4)  The  pressure  is  nowhere  infinite,  negative,  or  imaginary. 

Further  equation  (72-4-)  determines  the  pressure  at  any  distance  from  the 
centre. 

But  the  problem  is  only  solved  approximately,  and  the  material  here  dis- 
cussed is  not  strictly  incompressible  nor  is  it  a  perfect  fluid.  The  values  of 

2V,  T22,  T33,  2V  refer  to  the  particular  coordinates  used;  these  are  arbitrary 
and  do  not  correspond  to  natural  measure.  So  long  as  the  sphere  is  small,  the 
difference  does  not  amount  to  much  ;  but  for  large  spheres  the  solution  ceases 

to  correspond  to  a  problem  of  any  physical  importance  since  it  does  not  refer 
to  natural  measure.  It  is  unfortunate  that  the  solution  breaks  down  for  large 

spheres,  because  the  existence  of  a  limit  to  the  size  of  the  sphere  is  one  of  the 
most  interesting  objects  of  the  research. 

Clearly  we  need  a  solution  in  which  the  density  referred  to  natural  measure 

is  constant  throughout ;  i.e.  T  constant,  instead  of  T44  constant.  The  condition 
for  a  perfect  fluid  also  needs  modification.  (But  it  would  be  of  considerable 

interest  to  find  the  solution  for  a  solid  capable  of  supporting  non-isotropic 
stress,  if  the  problem  of  the  fluid  proves  too  difficult.)  So  far  as  I  know,  no 

progress  has  been  made  with  the  exact  solution  of  this  problem.  It  would 

throw  interesting  light  on  the  manner  in  which  the  radius  of  space  contracts 

as  the  size  of  the  sphere  continually  increases. 

If  it  is  assumed  that  Schwarzschild's  result 
a  <  \/(8/9«) 

is  correct  as  regards  order  of  magnitude,  the  radius  of  the  greatest  possible 
mass  of  water  would  be  370  million  kilometres.  The  radius  of  the  star  Betel- 

geuse  is  something  like  half  of  this ;  but  its  density  is  much  too  small  to  lead 

to  any  interesting  applications  of  the  foregoing  result. 

Admitting  Einstein's  modification  of  the  law  of  gravitation,  with  X  de- 
pending on  the  total  amount  of  matter  in  the  world,  the  size  of  the  greatest 

sphere  is  easily  determined.  By  (69'4)  R?  =  l/4nrp0,  from  which  R  (for  water) 
is  very  nearly  300  million  kilometres. 



CHAPTER  VI 

ELECTRICITY 

73.    The  electromagnetic  equations. 

In  the  classical  theory  the  electromagnetic  field  is  described  by  a  scalar 

potential  <t>  and  a  vector  potential  (F,  G,  H).    The  electric  force  (X,  Y,  Z) 
and  the  magnetic  force  (a,  /3,  7)  are  derived  from  these  according  to  the 

equations 

doc       dt 
.(731). 

dH_dO 

dy      dz . 
The  classical  theory  does  not  consider  any  possible  interaction  between  the 

gravitational  and  electromagnetic  fields.  Accordingly  these  definitions,  to- 

gether with  Maxwell's  equations,  are  intended  to  refer  to  the  case  in  which  no 
field  of  force  is  acting,  i.e.  to  Galilean  coordinates.  We  take  a  special  system 
of  Galilean  coordinates  and  set 

k»  =  (F,  G,  H,  <£)      (73-21) 

for  that  system.  Having  decided  to  make  n?  a  contravariant  vector  we  can 
find  its  components  in  any  other  system  of  coordinates,  Galilean  or  otherwise, 

by  the  usual  transformation  law ;  but,  of  course,  we  cannot  tell  without  investi- 
gation what  would  be  the  physical  interpretation  of  those  components.  In 

particular  we  must  not  assume  without  proof  that  the  components  of  k*  in 

another  Galilean  system  would  agree  with  the  new  F,  G,  H,  <t>  determined 

experimentally  for  that  system.  At  the  present  stage,  we  have  defined  k*  in  all 

systems  of  coordinates,  but  the  equation  (73'21)  connecting  it  with  experi- 
mental quantities  is  only  known  to  hold  for  one  particular  Galilean  system. 

Lowering  the  suffix  with  Galilean  g^,  we  have 

k»  =  (-F,-G,-H,  <J>)       (73-22). 
(j  if  (JfC 

Let  the  tensor  F„.v  =  /cM„  —  a-„m  =  -—  —  ̂  "    (73'3) 

as  in  (32-2). 
Then  by  (731) 

F   Jkx     d«_d(-F)     d®^x 14      dx4     dx±  dt  dx 

„    _  3/f2     9ac«  _  3  (—  G)     d(—II)_ 
23     dx3     dx.j,         1  ■-.  dy 
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Accordingly  the  electric  and  magnetic  forces  together  form  the  curl  of  the 

electromagnetic  potential.    The  complete  scheme  for  F^  is 

F„=    0  -7  /3      -X      (73-41). 

— >~/jl                7  0  —  a  —  T 

-/3  a  0  -Z 
X  Y  Z  0 

Using  Galilean  values  of  g*v  to  raise  the  two  suffixes, 

F^=      0       -7       $      X     (73-42). 

7  0  -a  Y 
-13  a  0  Z 
-X    -Y    -Z     0 

Let  p  be  the  density  of  electric  charge  and  <tx,  <ry,az  the  density  of  electric 
current.    We  set 

J^^ia-x,  a-y,  (tz,  p)     (73-5). 

Here  again  we  must  not  assume  that  the  components  of  J*  will  be  recognised 

experimentally  as  electric  charge  and  current-density  except  in  the  original 
system  of  coordinates. 

The  universally  accepted  laws  of  the  electromagnetic  field  are  those  given 

by  Maxwell.    Maxwell's  equations  are 

dt  '      dz       dx         dt  '     dx       dy  dt 

da     dy      dY 
dy      dz 

dy_dj3_c)X 
dy      dz       dt 

..(73-61), 

+  <TX,   r-  =  -^rr  +  (T dz      dx      dt 

■y, 

dJ3_da  =  dZ dx     dy      dt 

-  =  P    (73-63), 
dX 

dx 

da 

dY 

dy 

dZ 

dz 

.(73-62), 

dx      dy       dz 0    (73-64). 

The  Heaviside-Lorentz  unit  of  charge  is  used  so  that  the  factor  47r  does  not 
appear.  The  velocity  of  light  is  as  usual  taken  to  be  unity.  Specific  inductive 

capacity  and  magnetic  permeability  are  merely  devices  employed  in  obtaining 

macroscopic  equations,  and  do  not  occur  in  the  exact  theory. 

It  will  be  seen  by  reference  to  (73*41)  and  (7342)  that  Maxwell's  equations 
are  equivalent  to 

•(73-71), 

.(73-72). 

dFuv  .  dFva  .  dF, + + 

CM 

OJbfj  OJOll  OOCp 

=  >.. 

=  0 

a^1 

dxv 

The  first  comprises  the  four  equations  (73"61)  and  (73"64) ;  and  the  second 
comprises  (7362)  and  (73-63). 
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On  substituting  Fli.v  =  dxIJ.jdxv  —  dK^dx^.  in  (7371)  it  will  be  seen  that  the 

equation  is  satisfied  identically.  Also  (73*72)  is  the  simplified  form  for  Galilean 

coordinates  of  (F<iV)v  =  J*.    Hence  Maxwell's  laws  reduce  to  the  simple  form 

'--^-S   <7:m>' 
Fltv  =  J'i     (73-74), 

which  are  tensor  equations. 

By  (51*52)  the  second  equation  becomes 

d^v 

t:=3'   (m5)- 
Owing  to  the  antisymmetry  of  ̂ 'i",  d^1*-"  jdx^dx,,  vanishes,  the  terms  in  the 
summation  cancelling  in  pairs.    Hence 

°\     =^_  =  0      (73-76), OXIJLOXv        OXp 

whence,  by  (51-12),  (J>)M  =  0   (73-77). 

The  divergence  of  the  charge-and-current  vector  vanishes. 

For  our  original  coordinates  (73*77)  becomes 

dp +  d*y +  dp +  dp        dx       dy       dz      dt 

If  the  current  is  produced  by  the  motion  of  the  charge  with  velocity  (u,  v,  w), 

we  have  ax,  ay,  crz  =  pu,  pv,  pw,  so  that 

d  (pu)      d  (pv)     d(pw)  +  Vp  =  Q 
dx  dy  dz         dt 

which  is  the  usual  equation  of  continuity  (cf.  (53*71)),  showing  that  electric 
charge  is  conserved. 

It  may  be  noted  that  even  in  non-Galilean  coordinates  the  charge-and- 
current  vector  satisfies  the  strict  law  of  conservation 

oxu 

M 

This  may  be  contrasted  with  the  material  energy  and  momentum  which,  it  will 
be  remembered,  do  not  in  the  general  case  satisfy 

dxv 

so  that  it  becomes  necessary  to  supplement  them  by  the  pseudo-energy-tensor 

t;  (§  59)  in  order  to  maintain  the  formal  law.    Both  T*»  and  /*  have  the 

property  which  in  the  relativity  theory  we  recognise  as  the  natural  generali- 

sation of  conservation,  viz.  T„v  =  0,  J$L  =  0. 
If  the  charge  is  moving  with  velocity 

dx     dy     dz 

dt'    dt'    dt' 
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dx        dy        dz 
wehave  /"  =  P^  ,  PTr  PTt>  P 

ds  (dx      dy      dz      dt\  /»7q.cn\ 

=  pdt\Ts>    ds'   ds>    ds)      
(/'iM)- 

The  bracket  constitutes  a  contravariant  vector;  consequently  pdsjdt  is  an 

invariant.  Now  ds/dt  represents  the  FitzGerald  contraction,  so  that  a  volume 

which  would  be  measured  as  unity  by  an  observer  moving  with  the  charge 

will  be  measured  as  ds/dt  by  an  observer  at  rest  in  the  coordinates  chosen. 

The  invariant  pdsjdt  is  the  amount  of  charge  in  this  volume,  i.e.  unit  proper- 
volume. ds 

We  write  p0  =  p~r  , 

so  that  p0  is  the  proper-density  of  the  charge.  If  A*  is  the  velocity-vector 

dx^/ds  of  the  charge,  then  (73-81)  becomes 

J*=p0A»   (73-82). 
Charge,  unlike  mass,  is  not  altered  by  motion  relative  to  the  observer.  This 

follows  from  the  foregoing  result  that  the  amount  of  charge  in  an  absolutely 

defined  volume  (unit  proper-volume)  is  an  invariant.  The  reason  for  this 
difference  of  behaviour  of  charge  and  mass  will  be  understood  by  reference  to 

(53'2)  where  the  FitzGerald  factor  ds/dt  occurs  squared. 
For  the  observer  S  using  our  original  system  of  Galilean  coordinates,  the 

quantities  k^,  F^v  and  J*  represent  the  electromagnetic  potential,  force,  and 

current,  according  to  definition.  For  another  observer  S'  with  different  velocity, 

we  have  corresponding  quantities  «M',  F\v,  J'*,  obtained  by  the  transformation- 

laws  ;  but  we  have  not  yet  shown  that  these  are  the  quantities  which  S'  will 
measure  when  he  makes  experimental  determinations  of  potential,  force,  and 

current  relative  to  his  moving  apparatus.  Now  ii' S'  recognises  certain  measured 
quantities  as  potential,  force,  and  current  it  must  be  because  they  play  the 

same  part  in  the  world  relative  to  him,  as  km.  F^  and  J11  play  in  the  world 
relative  to  S.  To  play  the  same  part  means  to  have  the  same  properties,  or 

fulfil  the  same  relations  or  equations.  But  /e/,  F'^  and  J/>L  fulfil  the  same 
equations  in  S"s  coordinates  as  *-M,  F^  and  J*  do  in  S's  coordinates,  because 
the  fundamental  equations  (73-73),  (73"74)  and  (73-77)  are  tensor  equations 

holding  in  all  systems  of  coordinates.  The  fact  that  Maxwell's  equations  are 
tensor  equations,  enables  us  to  make  the  identification  of /cM,  F^,  J1*  with  the 
experimental  potential,  force,  and  current  in  all  systems  of  Galilean  coordinates 
and  not  merely  in  the  system  initially  chosen. 

In  one  sense  our  proof  is  not  yet  complete.  There  are  other  equations 

obeyed  by  the  electromagnetic  variables  which  have  not  yet  been  discussed. 

In  particular  there  is  the  equation  which  prescribes  the  motion  of  a  particle 

carrying  a  charge  in  the  electromagnetic  field.  We  shall  show  in  §  76  that 

this  also  is  of  the  tensor  form,  so  that  the  accented  variables  continue  to  play 

the  same  part  in  £"s  experience  which  the  unaccented  variables  play  in  $'s 
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experience.  But  even  as  it  stands  our  proof  is  sufficient  to  show  that  if  there 

exists  for  S'  a  potential,  force,  and  current  precisely  analogous  to  the  potential, 

force,  and  current  of  S,  these  must  be  expressed  by  kJ.,  F'  llv,  «/"/,  because  other 
quantities  would  not  satisfy  the  equations  already  obtained.  The  proviso  must 

clearly  be  fulfilled  unless  the  special  principle  of  relativity  is  violated. 
When  an  observer  uses  non-Galilean  coordinates,  he  will  as  usual  treat 

them  as  though  they  were  Galilean  and  attribute  all  discrepancies  to  the 

effects  of  the  field  of  force  which  is  introduced,  *„  ,  F^  and  J*  will  be  identified 

with  the  potential,  force,  and  current,  just  as  though  the  coordinates  were 

Galilean.  These  quantities  will  no  longer  accurately  obey  Maxwell's  original 
form  of  the  equations,  but  will  conform  to  our  generalised  tensor  equations 

(73-73)  and  (7374).  The  replacement  of  (73'72)  by  the  more  general  form 
(73-74)  extends  the  classical  equations  to  the  case  in  which  a  gravitational 
field  of  force  is  acting  in  addition  to  the  electromagnetic  field. 

74.    Electromagnetic  waves. 

(a)   Propagation  of  electromagnetic  potential. 

It  is  well  known  that  the  electromagnetic  potentials  F,  G,  H,  3>  are  not 

determinate.  They  are  concerned  in  actual  phenomena  only  through  their 

cml — the  electromagnetic  force.    The  curl  is  unaltered,  if  we  replace 

-F,  -G,  -H,  *    by   -F+^,   -Q  +  Ty,  -H  +  ̂ ,    *  +  Tt, 

where  V  is  an  arbitrary  function  of  the  coordinates.  The  latter  expression 

gives  the  same  field  of  electromagnetic  force  and  may  thus  equally  well  be 

adopted  for  the  electromagnetic  potentials. 
It  is  usual  to  avoid  this  arbitrariness  by  selecting  from  the  possible  values 

the  set  which  satisfies 

dF     d_G     d_H     d®  =  Q 

dx      dy      dz       dt 

Similarly  in  general  coordinates  we  remove  the  arbitrariness  of  *v  by  imposing 
the  condition 

(«*)M  =  0      (74-1). 
When  the  boundary-condition  at  infinity  is  added,  the  value  of  *M  becomes 

completely  determinate. 

By  (73-74)  and  (73-3) 
J,  =  (Fs)a  =  (^  F^\  =  rf*  (FrfU 

=  g^{K^a-Kpha)       (74-2) 

The  operator  gafi  (...)?*  has  been  previously  denoted  by  Q .  Also,  by  (741) 

Kaa  =  0.    Hence 

D*m  =  ̂ -^«.    (74"31>- 
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In  empty  space  this  becomes 

□  *,  =  0    (7432), 

showing  that  a>  is  propagated  with  the  fundamental  velocity. 

If  the  law  of  gravitation  G>„  =  \g^  for  curved  space-time  is  adopted,  the 

equation  in  empty  space  becomes 

(D  +  *)*m  =  0   (74-33). 

(b)   Propagation  of  electromagnetic  force. 

To  determine  a  corresponding  law  of  propagation  of  F^  we  naturally  try 

to  take  the  curl  of  (74'31);  but  care  is  necessary  since  the  order  of  the  operations 
curl  and  □  is  not  interchangeable. 

By  (74-2) 

=  ̂   (*&»*  -  «0Ml,a)  _  9^  (B^a  Kcfl  +  BpvaKhe  ~  Bpva  Kef,  -  B^  Kpe) 

by  (34-8) 
=  g^  (/erf*  -  KppV)a  —  g*p  (Bl^Ftf  —  BpvaLF€lx) 

.      =  ga^  (K^.p  —  kPiiv  +  Blpv  Kf)a  —  B^a,  F€a  —  G\  Feix . 
Hence 

But  by  the  cyclic  relation  (34*6) 

Bp^+B^p  +  Blp^O. 
Also  by  the  antisymmetric  properties 

(B^-B,^)F™  =  2B^F™. 
Hence  the  result  reduces  to 

so  that  □  F^  =  JM  -  Jm  -  Q"„F„  +  GIF*  +  ZB^F"    (74-41). 
In  empty  space  this  becomes 

UFllv=2BllvaeF^      (74-42) 
for  an  infinite  world.  For  a  curved  world  undisturbed  by  attracting  matter, 

in  which  G>  =  Xgl ,  B„va,  =  $k  (g^vgae  -  fag*),  the  result  is 

(D+fX)^  =  0      (74-43). 
It  need  not  surprise  us  that  the  velocity  of  propagation  of  electromagnetic 

potential  and  of  electromagnetic  force  is  not  the  same  (cf.  (74'33)  and  (74-43)). 
The  former  is  not  physically  important  since  it  involves  the  arbitrary  con- 

vention Ka  =  0. a 

But  the  result  (74*42)  is,  I  think,  unexpected.  It  shows  that  the  equations 
of  propagation  of  electromagnetic  force  involve  the  Riemann-Christoffel  tensor; 
and  therefore  this  is  not  one  of  the  phenomena  for  which  the  ordinary  Galilean 

equations  can  be  immediately  generalised  by  the  principle  of  equivalence. 
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This  naturally  makes  us  uneasy  as  to  whether  we  have  done  right  in  adopting 

the  invariant  equations  of  propagation  of  light  (ds  =  0,  Sjds  =  0)  as  true  in 
all  circumstances ;  but  the  investigation  which  follows  is  reassuring. 

(c)    Propagation  of  a  wave-front. 

The  conception  of  a  "  ray  "  of  light  in  physical  optics  is  by  no  means 
elementary.  Unless  the  wave-front  is  of  infinite  extent,  the  ray  is  an  abstrac- 

tion, and  to  appreciate  its  meaning  a  full  discussion  of  the  phenomena  of 

interference  fringes  is  necessary.  We  do  not  wish  to  enter  on  such  a  general 
discussion  here ;  and  accordingly  we  shall  not  attempt  to  obtain  the  formulae 

for  the  tracks  of  rays  of  light  for  the  case  of  general  coordinates  ab  initio. 
Our  course  will  be  to  reduce  the  general  formulae  to  such  a  form,  that  the 

subsequent  work  will  follow  the  ordinary  treatment  given  in  works  on  physical 

optics. 
The  fundamental  equation  treated  in  the  usual  theory  of  electromagnetic 

waves  is 

d2       S2        d2       d2\  A  ,„.  =nN =  0    (74-ol), 
dt-     dx2     dy2     dz2j 

which  is  the  form  taken  by  □  «>  =  0  in  Galilean  coordinates.  When  the  region 

of  space-time  is  not  flat  we  cannot  immediately  simplify  □«■„  in  this  way; 
but  we  can  make  a  considerable  simplification  by  adopting  natural  coordinates 

at  the  point  considered.  In  that  case  the  3-index  symbols  (but  not  their 
derivatives)  vanish,  and 

Hence  the  law  of  propagation  □  k^  =  0  becomes  in  natural  coordinates 

W-m'w'W^^  te*W'e]'Ke   (74"52)- 
At  first  sight  this  does  not  look  very  promising  for  a  justification  of  the 

principle  of  equivalence.  We  cannot  make  all  the  derivatives  d  {/x/S,  €}/dxa 
vanish  by  any  choice  of  coordinates,  since  these  determine  the  Riemann- 

Christoffel  tensor.  It  looks  as  though  the  law  of  propagation  in  curved  space- 

time  involves  the  Riemann-Christoffel  tensor,  and  consequently  differs  from 

the  law  in  fiat  space-time.  But  the  inner  multiplication  by  gaP  saves  the 
situation.  It  is  possible  to  choose  coordinates  such  that  (f^  d  [fi/3,  e}/dxa  vanishes 

for  all  the  sixteen  possible  combinations  of  fj,  and  e*.  For  these  coordin 

(74-52)  reduces  to  (74"51),  and  the  usual  solution  for  flat  space-time  will 
apply  at  the  point  considered. 

*  According  to  (3655)   it  is  possible  by  a  transformation  to  increase  d  {^/3,  e}/3*a   by  mi 

arbitrary  quantity  a^a ,  symmetrical  in  /j.,  ft  and  a.   The  sixteen  quantities  g^a*      (/x,  e=l,  2,  3,  4) 
will  not  have  to  fulfil  any  conditions  of  symmetry,  and  may  he  chosen  independently  •>!  one  another 

Hence  we  can  make  the  right-hand  side  of  (74-52)  vanish  by  an  appropriate  transformation. 

B.  12 
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A  solution  of  (74-51),  giving  plane  waves,  is 

277-j,'
 

*>  =  A„  exp  ——  (Ix  +  my  +  nz  —  ct)       (74-53). 

A, 
Here  A^  is  a  constant  vector;  I,  m,  n  are  direction  cosines  so  that  I2  +  m2  +  n2  =  1. 

Substituting  in  (7451)  we  find  that  it  will  be  satisfied  if  c2  =  l  and  the  first 
and  second  derivatives  of  I,  m,  n,  c  vanish.  According  to  the  usual  discussion 

of  this  equation  (/,  m,  n)  is  the  direction  of  the  ray  and  c  the  velocity  of 

propagation  along  the  ray. 
The  vanishing  of  first  and  second  derivatives  of  (I,  m,  n)  shows  that  the 

direction  of  the  ray  is  stationary  at  the  point  considered.  (The  light- oscilla- 
tions correspond  to  F^  (not  /rM)  and  the  direction  of  the  ray  would  not 

necessarily  agree  with  (I,  m,  n)  if  the  first  derivatives  did  not  vanish ;  conse- 
quently the  stationary  property  depends  on  the  vanishing  of  second  derivatives 

as  well.)    Further  the  velocity  c  along  the  ray  is  unity. 

It  follows  that  in  any  kind  of  space-time  the  ray  is  a  geodesic,  and  the 
velocity  is  such  as  to  satisfy  the  equation  ds  =  0.  Stated  in  this  form,  the 
result  deduced  for  a  very  special  system  of  coordinates  must  hold  for  all 

coordinate-systems  since  it  is  expressed  invariantly.  The  expression  for  the 

potential  (74'53)  is,  of  course,  only  valid  for  the  special  coordinate-system. 
We  have  thus  arrived  at  a  justification  of  the  law  for  the  track  of  a  light- 

pulse  (§  47  (4))  which  has  been  adopted  in  our  previous  work. 

(d)   Solution  of  the  equation  □  *"■  =  J*. 

We  assume  that  space-time  is  flat  to  the  order  of  approximation  required, 
and  accordingly  adopt  Galilean  coordinates.    The  equation  becomes 

of  which  the  solution  (well  known  in  the  theory  of  sound)  is 

{*W-5;/J/W*»«'-'-ST^      <74-61>< 
where  r  is  the  distance  between  (x,  y,  z)  and  (£,  r\.  £). 

The  contributions  to  «^  of  each  element  of  charge  or  current  are  simply 
additive ;  accordingly  we  shall  consider  a  single  element  of  charge  de  moving 

with  velocity  A*1,  and  determine  the  part  of  «**  corresponding  to  it.  By  (73-81) 
the  equation  becomes 

-taf///"*^   <74'62>' 
where  all  quantities  on  the  right  are  taken  for  the  time  t  —  r. 

For  an  infinitesimal  element  we  may  take  p  constant  and  insert  limits  of 

integration ;  but  these  limits  must  be  taken  for  the  time  t  —  r,  and  this  intro- 
duces an  important  factor  representing  a  kind  of  Doppler  effect.  If  the  element 

of  charge  is  bounded  by  two  planes  perpendicular  to  the  direction  of  r,  the 

limits  of  integration  are  from  the  front  plane  at  time  t  —  r  to  the  rear  plane 
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at  time  t  —  r  —  dr.  If  vr  is  the  component  velocity  in  the  direction  of  r,  the 
front  plane  has  had  time  to  advance  a  distance  vrdr.  Consequently  the 
instantaneous  thickness  of  the  element  of  charge  is  less  than  the  distance 

between  the  limits  of  integration  in  the  ratio  1  -  vr ;  and  the  integration  is 

over  a  volume  (1  -  v,)'1  times  the  instantaneous  volume  of  the  element  of 
charge.    Hence 

jjlpd^dvd^^-. 
Writing  as  usual  /3  for  the  FitzGerald  factor  dt/ds,  (74*62)  becomes 

A^de        )  \de(u,v,w,\)\ 
AC*  = 

.(7471). 
(47rr/3  (1  -  vr))  t-r      {  4>irr  (1  -  vr)  }t-r 

In  most  applications  the  motion  of  the  charge  can  be  regarded  as  uniform 

during  the  time  of  propagation  of  the  potential  through  the  distance  r.    In 
that  case 

fr(l  -vr)}t-r=  [r}t, 
the  present  distance  being  less  than  the  antedated  distance  by  vrr.    The  result 
then  becomes 

I  A"-de\        \de  (w,  v,  w,  1)) 
,-<*  = 

.(74-72). 
(47r?'j3j  t      {        47rr 

It  will  be  seen  that  the  scalar  potential  4>  of  a  charge  is  unaltered  by 
uniform  motion,  and  must  be  reckoned  for  the  present  position  of  the  charge, 
not  from  the  antedated  position, 

The  equation  (74-7l)  can  be  written  in  the  pseudo-tensor  form 

\    A"-de  ) 
Klx==  \i — T- u\    (74-8), 

where  R*  is  the  pseudo-vector  representing  the  displacement  from  the  charge 

(£>  V>  ?.  T)  to  the  point  (x,  y,  z,  t)  where  ac*  is  reckoned.  The  condition 
RaRa  =  Q  gives 

-(*-zy-(!/-vy-(z-i;r  +  (t-Ty=o, 
so  that  T=t  —  r. 

Also  AVRV  =  -  /3u  {x  -  f)  -  j3v  (y  -  v)  -  /3w  (z  -  £)  +  /3  (t  -  r) 
=*  —  /3vrr  +  ftr 

=  r0(l-vr). 

A  finite  displacement  R*  is  not  a  vector  in  the  general  theory.    We  call  it 

a  pseudo-vector  because  it  behaves  as  a  vector  for  Galilean  coordinates  and 

Lorentz  transformations.    Thus  the  equation  (74-8)  does  not  admit  of  applica- 
tion to  coordinates  other  than  Galilean. 

75.    The  Lorentz  transformation  of  electromagnetic  force. 

The  Lorentz  transformation  for  an  observer  S'  moving  relatively  to  S  with 
a  velocity  u  along  the  #-axis  is 

oci  =  q  (#i  -  ux4),     xa'  =  xa,     xa'  =  xt,     xl  =  q (xt  —  ita-,)   ...(75*1), 

where  q  =  (1  —  «-)"-. 

ia— 2 
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We  use  q  instead  of  /3  in  order  to  avoid  confusion  with  the  component  /3  of 

magnetic  force. 
We  have 

d%i       dx4'  d#i       dx4'  d%2  _  dx3'  _ 

=  ?> 

qu, 

.(75-2), 

/  =  F'13 

F°-f* 

4 

dx\       dx4      v      dx±       dxl  1^'      dx2      dx3 
and  all  other  derivatives  vanish. 

To  calculate  the  electromagnetic  force  for  S'  in  terms  of  the  force  for  S, 
we  apply  the  general  formulae  of  transformation  (23-21).    Thus 

dxi  dx2' 

dxa  dxp 

  Vxl    Vx2     rr12    ,     VXl    VX2     rr42 

dx\  dx2  dXi  dx2 

=  qy  —  qu  Y. 

Working  out  the  other  components  similarly,  the  result  is 

X'  =  X,      Y'  =  q(Y-uy),      Z>  =  q(Z  +  ii{3)l 

a!    =a,       ff  =  q  (0  +  uZ),     y'=q(y-uY)\         h 
which  are  the  formulae  given  by  Lorentz. 

The  more  general  formulae  when  the  velocity  of  the  observer  S'  is  (u,  v,  iv) 
become  very  complicated.  We  shall  only  consider  the  approximate  results 

when  the  square  of  the  velocity  is  neglected.  In  that  case  q  =  l,  and  the 

formulae  (75"3)  can  be  completed  by  symmetry,  viz. 
X '  =  X  —  w/3  +  Vy  | 

a     =  a  +  wY  —  vZ[ .(75-4). 

76.    Mechanical  effects  of  the  electromagnetic  field. 

According  to  the  elementary  laws,  a  piece  of  matter  carrying  electric 
charge  of  density  p  experiences  in  an  electrostatic  field  a  mechanical  force 

pX,     pY,     pZ 

per  unit  volume.    Moving  charges  constituting  electric  currents  of  amount 

(ax,  a-y,  <rz)  per  unit  volume  are  acted  on  by  a  magnetic  field,  so  that  a'" mechanical  force 

yay  -  /3az,     aaz  -  yax,     fiax  -  aay 
per  unit  volume  is  experienced. 

Hence  if  (P,  Q,  R)  is  the  total  mechanical  force  per  unit  volume 

P  =  pX  +  y<jy  —  ficrz  " 
Q  =  pY  +  acrz  —  yax    I        (761). 

R=  pZ  +  /3<TX  —  CL<Ty 
The  rate  at  which  the  mechanical  force  does  work  is 

S  =  <rxX  +  (jyY  +  azZ. 

The  magnetic  part  of  the  force  does  no  work  since  it  acts  at  right  angles  to 
the  current  of  charged  particles. 
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By  (73-41)  and  (73-5)  we  find  that  these  expressions  are  equivalent  to 

(P,  Q,  R,-S)  =  F^J». 

We  denote  the  vector  F^J"  by  //M.  Raising  the  suffix  with  Galilean  gH¥t  we have 

(P,  Q,  R,  S)  =  - h?  =  - F*VJ»   (762). 

The  mechanical  force  will  change  the  momentum  and  energy  of  the 
material  system;  consequently  the  material  energy-tensor  taken  alone  will 
no  longer  be  conserved.  In  order  to  preserve  the  law  of  conservation  of 

momentum  and  energy,  we  must  recognise  that  the  electric  field  contains  an 

electromagnetic  momentum  and  energy  whose  changes  are  equal  and  opposite 

to  those  of  the  material  system*.  The  whole  energy-tensor  will  then  consist 
of  two  parts,  M^  due  to  the  matter  and  E^  due  to  the  electromagnetic  field. 

We  keep  the  notation  T^  for  the  whole  energy-tensor — the  thing  which 

is  always  conserved,  and  is  therefore  to  be  identified  with  G^  —  ̂ g^G.   Thus 

Tl  =  Ml  +  El     (76-3). 

Since  P,  Q,  R,  S  measure  the  rate  of  increase  of  momentum  and  energy 

of  the  material  system,  they  may  be  equated  to  dM'iv/dxv  as  in  (53-82).   Thus 
  —  —  h*. 
dxv 

The  equal  and  opposite  change  of  the  momentum  and  energy  of  the  electro- 
magnetic field  is  accordingly  given  by 

dE<"> 

-= —  =  +  If. 

These  equations  apply  to  Galilean  or  to  natural  coordinates.  We  pass  over  to 

general  coordinates  by  substituting  covariant  derivatives,  so  as  to  obtain  the 
tensor  equations 

M?  =  -hP=*-E?   (76-4), 

which  are  independent  of  the  coordinates  used.    This  satisfies 

T?  =  (M^  +  E*v)v  =  0. 

Consider  a  charge  moving  with  velocity  (u,  v,  w).    We  have  by  (75'4) 

PX'  =  PX-(piv)(3  +  (pv)v 

=    pX    -     (TZ/3    +     O-yJ 
-P. 

0 

"  Notwithstanding  the  warning  conveyed  by  the  fate  of  potential  energy  (§  5!))  we  are  again 
running  into  danger  by  generalising  energy  so  as  to  conform  to  an  assigned  law.  I  arn  not  sure 
that  the  danger  is  negligible.    But  we  are  on  stronger  ground  now,  because  we  know  that  there  is  a 

world-tensor  which  satisfies  the  assigned  law  T'MV  =  0  ;  whereas  the  potential  energy  was  introduced 

to  satisfy  dBv jdx  =0,  and  it  was  only  a  speculative  possibility  (now  found  to  be  untenable)  that 
there  existed  a  tensor  with  that  property. 
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The  square  of  the  velocity  has  been  neglected,  and  to  this  order  of  approxima- 

tion p'  =  p.  Thus  to  the  first  order  in  the  velocities,  the  mechanical  force  on 

a  moving  charge  is  {p  X',  p'Y',  p'Z') ;  just  as  the  mechanical  force  on  a  charge 
at  rest  is  (pX,  pY,  pZ).  We  obtain  the  force  on  the  moving  charge  either  by 

applying  the  formula  (76T)  in  the  original  coordinates,  or  by  transforming  to 
new  coordinates  in  which  the  charge  is  at  rest  so  that  trx,  ay,  <rz  =  0.  The 
equivalence  of  the  two  calculations  is  in  accordance  with  the  principle  of 

relativity  for  uniform  motion. 
If  the  square  of  the  velocity  is  not  neglected,  no  such  simple  relation 

exists.  The  mechanical  force  (mass  x  acceleration)  will  not  be  exactly  the  same 
in  the  accented  and  unaccented  systems  of  coordinates,  since  the  mass  and 

acceleration  are  altered  by  terms  involving  the  square  of  the  velocity.  In 
fact  we  could  not  expect  any  accurate  relation  between  the  mechanical  force 

(P,  Q,  R)  and  the  electric  force  (X,  Y,  Z)  in  different  systems  of  coordinates;  the 

former  is  part  of  a  vector,  and  the  latter  part  of  a  tensor  of  the  second  rank. 

Perhaps  it  might  have  been  expected  that  with  the  advent  of  the  electron 

theory  of  matter  it  would  become  unnecessary  to  retain  a  separate  material 

energy-tensor  M?-v,  and  that  the  whole  energy  and  momentum  could  be 
included  in  the  energy-tensor  of  the  electromagnetic  field.  But  we  cannot 

dispense  with  M*9.  The  fact  is  that  an  electron  must  not  be  regarded  as  a 
purely  electromagnetic  phenomenon  ;  that  is  to  say,  something  enters  into  its 

constitution  which  is  not  comprised  in  Maxwell's  theory  of  the  electromagnetic 
field.  In  order  to  prevent  the  electronic  charge  from  dispersing  under  its  own 

repulsion,  non-Maxwellian  "binding  forces"  are  necessary,  and  it  is  the  energy, 
stress  and  momentum  of  these  binding  forces  which  constitute  the  material 

energy-tensor  M1*". 

77.    The  electromagnetic  energy -tensor. 

To  determine  explicitly  the  value  of  E"^  we  have  to  rely  on  the  relation 
found  in  the  preceding  section 

El^h^F^J^F^F*:   (771). 
The  solution  of  this  differential  equation  is 

E^-F'-F^  +  lg^F^    (77-2). 

To  verify  this  we  take  the  divergence,  remembering  that  covariant  dif- 

ferentiation obeys  the  usual  distributive  law  and  that  g\  is  a  constant. 

E%  =  -  FvvaF.a  -    F'-F^  +  I  gl  (FfFafi  +  F^F^) 

=  -F?F»a-    F-F^  +  tglFfF*,         by  (26-3) 

=  -  F7F.a -\F^F^  -±F*?F#.  +  ±F#F^ 
by  changes  of  dummy  suffixes, 

=     FTF^  +  ̂ F^iF^  +  F^  +  F^) 

by  the  antisymmetry  of  F^". 
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It  is  easily  verified  that 

F   0a-F      -l  F      -  d^a  i  dFe»  ,  dF^     n 
<7.«|3        d.ra       da;M 

by  (30-3)  and  (73-71);  the  terms  containing  the  3-index  symbols  mutually 
cancel. 

Hence  E^F^F^^J-F^, 

agreeing  with  (77*1). 
It  is  of  interest  to  work  out  the  components  of  the  energy-tensor  (77-2) 

in  Galilean  coordinates  by  (73*41)  and  (73*42).    We  have 

i^3i^  =  2(a2  +  /32  +  72-X2-  Y--Z')      (77*3), 

E\  =  hA°:2-F--r)  +  h(X2-Y*-Z>)   (77*41), 

E\  =  a$  +  XY       (77*42), 

E\  =  /3Z-yY   (7743), 

E\  =  \  (a2  +  /32  +  72)  +  !(X2+  F»  +  Z»)   (77*44). 

The  last  gives  the  energy  or  mass  of  the  electromagnetic  field;  the  third 

expression  gives  the  momentum ;  the  first  two  give  the  stresses  in  the  field. 

In  all  cases  these  formulae  agree  with  those  of  the  classical  theory. 

Momentum,  being  rate  of  flow  of  mass,  is  also  the  rate  of  flow  of  energy. 

In  the  latter  aspect  it  is  often  called  Poynting's  vector.  It  is  seen  from  (77*43) 
that  the  momentum  is  the  vector-product  of  the  electric  and  magnetic  forces 

— to  use  the  terminology  of  the  elementary  vector  theory. 

From  .£"£  we  can  form  a  scalar  E  by  contraction,  just  as  T  is  formed  from 
T£.  The  invariant  density  T  will  be  made  up  of  the  two  parts  E  and  M,  the 

former  arising  from  the  electromagnetic  field  and  the  latter  from  the  matter 
or  non-Maxwellian  stresses  involved  in  the  electron.  It  turns  out,  however, 

that  E  is  identically  zero,  so  that  the  electromagnetic  field  contributes  nothing 

to  the  invariant  density.  The  invariant  density  must  be  attributed  entirely 

to  the  non-Maxwellian  binding  stresses.    Contracting  (77*2) 

Em~F~F„  +  lfiF+F+»Q   (77*5), 
since  a**  =  4. 

The  question  of  the  origin  of  the  inertia  of  matter  presents  a  very  curious 

paradox.    We  have  to  distinguish — 

the  invariant  mass  in  arising  from  the  invariant  density  T,  and . 

the  relative  mass  M  arising  from  the  coordinate  density  Tu. 
As  we  have  seen,  the  former  cannot  be  attributed  to  the  electromagnetic  field. 

But  it  is  generally  believed  that  the  latter — which  is  the  ordinary  mass  as 
understood  in  physics — arises  solely  from  the  electromagnetic  fields  of  the 
electrons,  the  inertia  of  matter  being  simply  the  energy  of  the  electromagnel  ic 

fields  contained  in  it.  It  is  probable  that  this  view,  which  arose  in  consequence 

of  J.  J.  Thomson's  researches*,  is  correct;  so  that  ordinary  or  relative  mass 
*  Phil.  Mag.  vol.  11  (1881),  p.  229. 
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may  be  regarded  as  entirely  electromagnetic,  whilst  invariant  mass  is  entirely 

non-electromagnetic. 
How  then  does  it  happen  that  for  an  electron  at  rest,  invariant  mass  and 

relative  mass  are  equal,  and  indeed  synonymous  ? 

Probably  the  distinction  of  Maxwellian  and  non-Maxwellian  stresses  as 

tensors  of  different  natures  is  artificial — like  the  distinction  of  gravitational 

and  inertial  fields — and  the  real  remedy  is  to  remodel  the  electromagnetic 
equations  so  as  to  comprehend  both  in  an  indissoluble  connection.  But  so 

long  as  we  are  ignorant  of  the  laws  obeyed  by  the  non-Maxwellian  stresses,  it 
is  scarcely  possible  to  avoid  making  the  separation.  From  the  present  point 

of  view  we  have  to  explain  the  paradox  as  follows — 
Taking  an  electron  at  rest,  the  relative  mass  is  determined  solely  by  the 

component  EiA ;  but  the  stress-components  of  E*v  make  a  contribution  to  E 
which  exactly  cancels  that  of  Eu,  so  that  E  —  0.  These  stresses  are  balanced 

by  non-Maxwellian  stresses  Mn,  ...  il/33;  the  balancing  being  not  necessarily 
exact  in  each  element  of  volume,  but  exact  for  the  region  round  the  electron 

taken  as  a  whole.  Thus  the  term  which  cancels  Eu  is  itself  cancelled,  and  E4i 
becomes  reinstated.  The  final  result  is  that  the  integral  of  T  is  equal  to  the 

integral  of  E4i  for  the  electron  at  rest. 
It  is  usually  assumed  that  the  non-Maxwellian  stresses  are  confined  to 

the  interior,  or  the  close  proximity,  of  the  electrons,  and  do  not  wander  about 

in  the  detached  way  that  the  Maxwellian  stresses  do,  e.g.  in  light-waves. 
I  shall  adopt  this  view  in  order  not  to  deviate  too  widely  from  other  writers, 

although  I  do  not  see  any  particular  reason  for  believing  it  to  be  true*. 
If  then  all  non-Maxwellian  stresses  are  closely  bound  to  the  electrons,  it 

follows  that  in  regions  containing  no  matter  E^  is  the  entire  energy-tensor. 

Then  (54-3)  becomes 

G;-yiG  =  -S7rE;   (77-6). 
G  =  8ttE  =  0, Contracting, 

and  the  equation  simplifies  to 

Ghv  =  -S7rE^      (77-7) 

for  regions  containing  electromagnetic  fields  but  no  matter.  We  may  notice 

that  the  Gaussian  curvature  of  space-time  is  zero  even  when  electromagnetic 
energy  is  present  provided  there  are  no  electrons  in  the  region. 

Since  for  electromagnetic  energy  the  invariant  mass,  m,  is  zero,  and  the 

relative  mass,  M,  is  finite,  the  equation  (12'3) 
M=mdt/ds 

shows  that  ds/dt  is  zero.  Accordingly  free  electromagnetic  energy  must  always 
have  the  velocity  of  light. 

'  We  may  evade  the  difficulty  by  extending  the  definition  of  electrons  or  matter  to  include  all 
regions  where  Maxwell's  equations  are  inadequate  (e.g.  regions  containing  quanta). 
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78.    The  gravitational  field  of  an  electron. 

This  problem  differs  from  that  of  the  gravitational  field  of  a  particle  (§  38) 
in   that  the  electric  field  spreads  through  all  space,  and  consequently  the 

energy-tensor  is  not  confined  to  a  point  or  small  sphere  at  the  origin. 
For  the  most  general  symmetrical  field  we  take  as  before 

gn  =  ~e\     gx  =  -r2,     g33  =  -r°-sm*e,     giX  =  ev     (781). 
Since  the  electric  field  is  static,  we  shall  have 

F,  G,  H '=  k1}  k,,  ks  =  0, 
and  ka  will  be  a  function  of  r  only.    Hence  the  only  surviving  components  of 
F„v  are 

F4l  =  -Fu  =  Ki'    (782), 

the  accent  denoting  differentiation  with  respect  to  r.    Then 

F»  =  g"g"Fn    =  -e~^+v)  */, 

and  g41  =  FiX  V^  =  -  e~*  ̂ +v)  r8  sin  0 .  */. 

Hence  by  (7375)  the  condition  for  no  electric  charge  and  current  (except  at 

the  singularity  at  the  origin)  is 

^  =  -  sin  6  i-  («-*&+">  rV)  =  0      (78-3), dxx  or 

so  that  Kt'=€-e*W      (78-4), 

r- 

where  e  is  a  constant  of  integration. 

Substituting  in  (77 2)  we  find 

1  e2 

2 

.4 

.(78-5). 

By  (77*7)  we  have  to  substitute  -8-irE^  for  zero  on  the  right-hand  side  of 

(38-61-38-64 ).  The  first  and  fourth  equations  give  as  before  \'  =  -  v  ;  and  the 
second  equation  now  becomes 

e*(l+rv')-l  =  -8vrg*E\ 
=  -  47re2/r2. 

Hence  writing  e"  —  y,  y  +  ry'  =  1  —  47re'-'/r2, 

so  that  ry  =  r  +  47re2/r  -  2m, 
where  2m  is  a  constant  of  integration. 

Hence  the  gravitational  field  due  to  an  electron  is  given  by 

fa*  =  _  y-idr*  -  r-dd2  -  r-  sin2  0d(fr  +  ydt\ 

with  7=1-  —  +~jT      <78,,)- 

This  result  appears  to  have  been  first  given  by  NordstriSm.    I  have  here 

followed  the  solution  as  given  by  G.  B.  Jeffery*. 

*  Proc.  Hoy.  Soc.  vol.  99  a,  p.  123. 
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The  effect  of  the  term  47re2/r!  is  that  the  effective  mass  decreases  as  r 
decreases.  This  is  what  we  should  naturally  expect  because  the  mass  or  energy 

is  spread  throughout  space.  We  cannot  put  the  constant  m  equal  to  zero, 
because  that  would  leave  a  repulsive  force  on  an  uncharged  particle  varying 

as  the  inverse  cube  of  the  distance ;  by  (55'8)  the  approximate  Newtonian 

potential  is  m/r  —  2ire2/r2. 
The  constant  m  can  be  identified  with  the  mass  and  4>7re  with  the  electric 

charge  of  the  particle.  The  known  experimental  values  for  the  negative 
electron  are 

m  =  7 .  10-56  cm., 

a=fLlL  =  1-5.  10-13  cm. m 

The  quantity  a  is  usually  considered  to  be  of  the  order  of  magnitude  of  the 

radius  of  the  electron,  so  that  at  all  points  outside  the  electron  m/r  is  of  order 

10-40  or  smaller.    Since  A,  +  v  =  0,  (78-4)  becomes 

Fa 

which  justifies  our  identification  of  4>7re  with  the  electric  charge. 

This  example  shows  how  very  slight  is  the  gravitational  effect  of  the 
electronic  energy.  We  can  discuss  most  electromagnetic  problems  without 

taking  account  of  the  non-Euclidean  character  which  an  electromagnetic  field 

necessarily  imparts  to  space-time,  the  deviations  from  Euclidean  geometry 
being  usually  so  small  as  to  be  negligible  in  the  cases  we  have  to  consider. 

When  r  is  diminished  the  value  of  y  given  by  (78*6)  decreases  to  a  minimum 
for  r  =  2a,  and  then  increases  continually  becoming  infinite  at  r  =  0.  There  is 

no  singularity  in  the  electromagnetic  and  gravitational  fields  except  at  r  =  0. 

It  is  thus  possible  to  have  an  electron  which  is  strictly  a  point-singularity, 
but  nevertheless  has  a  finite  mass  and  charge. 

The  solution  for  the  gravitational  field  of  an  uncharged  particle  is  quite 

different  in  this  respect.  There  is  a  singularity  at  r  =  2m,  so  that  the  particle 
must  have  a  finite  perimeter  not  less  than  4>Trm.  Moreover  this  singularity  is 

caused  by  y  vanishing,  whereas  for  the  point-electron  the  singularity  is  due 
to  7  becoming  infinite. 

This  demonstration  that  a  point-electron  may  have  exactly  the  properties 
which  electrons  are  observed  to  have  is  a  useful  corrective  to  the  general  belief 

that  the  radius  of  an  electron  is  known  with  certainty.  But  on  the  whole, 

I  think  that  it  is  more  likely  that  an  electron  is  a  structure  of  finite  size  ;  our 

solution  will  then  only  be  valid  until  we  enter  the  substance  of  the  electron, 

so  that  the  question  of  a  singularity  at  the  origin  does  not  arise. 
Assuming  that  we  do  not  encounter  the  substance  of  the  electron  outside 

the  sphere  r  =  a,  the  total  energy  of  the  electromagnetic  field  beyond  this 
radius  would  be  equal  to  the  mass  of  the  electron  determined  by  observation. 
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For  this  reason  a  is  usually  taken  as  the  radius  of  the  electron.  If  it  is 

admitted  that  the  electromagnetic  field  continues  undisturbed  within  this 

limit,  an  excess  of  energy  accumulates,  and  it  is  therefore  necessary  to  suppose 

that  there  exists  negative  energy  in  the  inner  portion,  or  that  the  effect  of 

the  singularity  is  equivalent  to  a  negative  energy.  The  conception  of  negative 

energy  is  not  very  welcome  according  to  the  usual  outlook. 

Another  reason  for  believing  that  the  charge  of  an  electron  is  distributed 

through  a  volume  of  radius  roughly  equal  to  a  will  be  found  in  the  investiga- 

tion of  §  80.  Accordingly  I  am  of  opinion  that  the  point-electron  is  no  more 

than  a  mathematical  curiosity,  and  that  the  solution  (78-6)  should  be  limited 
to  values  of  r  greater  than  a. 

79.    Electromagnetic  action. 

The  invariant  integral 

A  =  \  JF^F^^^dr       (791) 

is  called  the  action  of  the  electromagnetic  field.    In  Galilean  coordinates  it 

becomes  by  (77*3) 

fdtjfjl(c?  +  F  +  r-X*-Y*-Z>)dxdydz    (79-2). 

Regarding  the  magnetic  energy  as  kinetic  (T)  and  the  electric  energy  as 
potential  (  V)  this  is  of  the  form 

j(T-V)dt, 
i.e.  the  time-integral  of  the  Lagrangian  function*.  The  derivation  of  the 
electromagnetic  equations  by  the  stationary  variation  of  this  integral  has  been 

investigated  in  the  classical  researches  of  Larmorf. 

We  shall  now  show  that  the  two  most  important  electromagnetic  tensors, 

viz.  the  energy-tensor  E*v  and  the  charge-and-current  vector  J*4,  are  the 
Hamiltonian  derivatives  of  the  action,  the  formulae  being 

i\F*»F^  =  \E**     (79-31), % 

V-v 

*   (P^^-j*      (7932). 

*  Iu  dynamics  there  are  two  integrals  which  have  the  stationary  property  under  proper  restric- 

tions, viz.  \Tdt  and  j{T-  V)dt.  The  first  of  these  is  the  action  as  originally  defined.  In  the 

general  theory  the  term  has  been  applied  to  both  integrals  somewhat  indiscriminately,  since  there 
is  no  clear  indication  of  energy  which  must  be  reckoned  as  potential. 

j"  Aether  and  Matter,  Chapter  vi. 
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First  consider  small  variations  %M„,  the  «M  remaining  constant.    The  F^ 

(but  not  the  F*v)  will  accordingly  remain  unvaried.    We  have  then 

8  {F*F„  f=~g)  =  F^F.V  8  ( <J—g)  +  Fa,  F„»/=j.&  (g^g^) 

=  F"F„  */=j.l&+F*F„'f=~g  {$"  *0*  +  9V?  &ST) 

L  9 

=  ̂   i-iF"F„g.fify*  +  2F.fiFlu,SrSg'*} 

=  2'f=g.B0+{-lg+F"F„  +  F*,Flu\ 

=  -  2E„p  V^ .  8g»f>        by  (77-2) 

=     Wf^g.hg*         by  (35-2). 

From  this  (79'31)  follows  immediately. 
Next  consider  variations  §/cM,  the  g^v  remaining  constant.    We  have 

M-v 

8 (F^F^ */-g)  =  2F»V  \f-g.8F, 
'd(&Kn)      d(8K„) 

_  2Fn-y  \]  —  g 

cxv dxu 

=  AF*"  V  -  g 

owing  to  the  antisymmetry  of  F**v 

d(8«M) docv 

=  -4^-  (F^  V-  g)  S/cM  +  4^-  (JV  V  -g.  S*M). 

The  second  term  can  be  omitted  since  it  is  a  complete  differential,  and 

yields  a  surface-integral  over  the  boundary  where  the  variations  have  to  vanish. 
Hence 

8  j  F^F,,,  \i^gdr  =  -  4  f  ~  (^"  V^)  .  8KfJLdr 

=  -4    J^Bk^.^/  -  gdi 

by  (73-75).    This  demonstrates  (79'32). 
In  a  region  free  from  electrons 

rf^v  —  E*"  =  0 

Hence  by  (60-43)  and  (79-31) 
n 

*9, 

(G-^irF^F^)  =  0      (79-4). 

H-v 

In  the  mechanical  theory,  neglecting  electromagnetic  fields,  we  found  that 

the  action  G  was  stationary  in  regions  containing  no  matter.  We  now  see 
that  when  electromagnetic  fields  are  included,  the  quantity  which  is  stationary 

is  G  —  ̂ ttF^F^.  Moreover  it  is  stationary  for  variations  S«M  as  well  as  8gHV, 
since  when  there  are  no  electrons  present  J*  must  be  zero. 

The  quantity  G  —  AsirF^F^  thus  appears  to  be  highly  significant  from  the 
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physical  point  of  view,  in  the  discrimination  between  matter  (electrons)  and 
electromagnetic  fields.  But  this  significance  fails  to  appear  in  the  analytical 
expression.  Analytically  the  combination  of  the  two  invariants  G  and  F^F  „ 

— the  one  a  spur,  and  the  other  a  square  of  a  length — appears  to  be  quite 
nonsensical.  We  can  only  regard  the  present  form  of  the  expression  as  a 

stepping-stone  to  something  simpler.  It  will  appear  later  that  0  -  kirF^F^ 
is  perhaps  not  the  exact  expression  for  the  significant  physical  quantity ;  it 
may  be  an  approximation  to  a  form  which  is  analytically  simpler,  in  which 

the  gravitational  and  electromagnetic  variables  appear  in  a  more  intelligible 
combination. 

Whereas  material  and  gravitational  actions  are  two  aspects  of  the  same 

thing,  electromagnetic  action  stands  entirely  apart.  There  is  no  gravitational 

action  associated  with  an  electromagnetic  field,  owing  to  the  identity  E=Q. 

Thus  any  material  or  gravitational  action  is  additional  to  electromagnetic 

action — if  "  addition  "  is  appropriate  in  connection  with  quantities  which  are 
apparently  of  dissimilar  nature. 

80.    Explanation  of  the  mechanical  force. 

Why  does  a  charged  particle  move  when  it  is  placed  in  an  electromagnetic 
field  ?  We  may  be  tempted  to  reply  that  the  reason  is  obvious ;  there  is  an 

electric  force  lying  in  wait,  and  it  is  the  nature  of  a  force  to  make  bodies 

move.  But  this  is  a  confusion  of  terminology ;  electric  force  is  not  a  force  in 

the  mechanical  sense  of  the  term ;  it  has  nothing  to  do  with  pushing  and 

pulling.  Electric  force  describes  a  world-condition  essentially  different  from 
that  described  by  a  mechanical  force  or  stress-system ;  and  the  discussion  in 
|  76  was  based  on  empirical  laws  without  theoretical  explanation. 

If  we  wish  for  a  representation  of  the  state  of  the  aether  in  terms  of 

mechanical  forces,  we  must  employ  the  stress-system  (77"41,  77-42).  In  fact 
the  pulling  and  pushing  property  is  described  by  the  tensor  E^  not  by  F^. 
Our  problem  is  to  explain  why  a  somewhat  arbitrary  combination  of  the 

electromagnetic  variables  F^v  should  have  the  properties  of  a  mechanical 

stress-system. 
To  reduce  the  problem  to  its  simplest  form  we  consider  an  isolated  electron. 

In  an  electromagnetic  field  its  world-line  does  not  follow  a  geodesic,  but 
deviates  according  to  laws  which  have  been  determined  experimentally.  It  is 

worth  noticing  that  the  behaviour  of  an  isolated  electron  has  been  directly 

determined  by  experiment,  this  being  one  of  the  few  cases  in  which  micro- 
scopic laws  have  been  found  immediately  and  not  inferred  hypothetically  from 

macroscopic  experiments.  We  want  to  know  what  the  electron  is  trying  to 

accomplish  by  deviating  from  the  geodesic — what  condition  of  existence  is 
fulfilled,  which  makes  the  four-dimensional  structure  of  an  accelerated  elect  ron 

a  possible  one,  whereas  a  similar  structure  ranged  along  a  geodesic  track  would 
be  an  impossible  one. 
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The  law  which  has  to  be  explained  is* 

_„{*&+  (*,,.}£  **}-*-J*.J>   (80-1), 
which  is  the  tensor  equation  corresponding  to  the  law  of  elementary  electro- 
statics 

m  df* = Xe- Let  A*  be  the  velocity-vector  of  the  electron  {A*  =  dx^jds),  and  p0  the 

proper-density  of  the  charge,  then  by  (73-82) 
J*  =  p»A»   (80-21), 

«*  w+w>^t=Av^   (8°-22)' 
as  in  (33-4). 

Considering  the  verification  of  (80-l)  by  experiment  we  remark  that  X  or 
Fpv  refers  to  the  applied  external  field,  no  attention  being  paid  to  the  possible 

disturbance  of  this  field  caused  by  the  accelerated  electron  itself.  To  distin- 
guish this  we  denote  the  external  field  by  F\v.    The  equation  to  be  explained 

accordingly  becomes 
mA"(A")v  =  -F\(PoA»), 

or,  lowering  the  suffix  /x, 
mAvAll_v  =  -F\veAv    (803). 

We  have  replaced  the  density  p0  by  the  quantity  e  for  the  reason  explained  in 
the  footnote. 

Consider  now  the  field  due  to  the  electron  itself  in  its  own  neighbourhood. 

This  is  determined  by  (7441) 

D  F„  =  J„.v  -  Jm  -  OlF„  +  GlFeil  +  2BllvaeF^. 
The  discussion  of  §  78  shows  that  we  may  safely  neglect  the  gravitational 

field  caused  by  the  energy  of  the  electron  or  of  the  external  field.  Hence 

approximately 
I   I  *?  fiv  "up  '-'  17*  • 

The  solution  is  as  in  (7472) 
fdejA^-A^) 

""     J  "       47r/3r 
1     ,  .  s  fcle 

(A^-A^fj   (80-4), 

4tt/3 

if  all  parts  of  the  electron  have  the  same  velocity  A*.  This  result  is  obtained 
primarily  for  Galilean  coordinates;  but  it  is  a  tensor  equation  applying  to 

all  coordinate-systems  provided  that  fde/fir  is  treated  as  an  invariant  and 
calculated  in  natural  measure.  We  shall  reckon  it  in  proper-measure  and 
accordingly  drop  the  factor  /3. 

*  In  this  and  a  succeeding  equation  I  have  a  quantity  on  the  left-hand  side  and  a  density  on 
the  right-hand  side.  I  trust  to  the  reader  to  amend  this  mentally.  It  would,  I  think,  only  make 
the  equations  more  confusing  if  I  attempted  to  indicate  the  amendment  symbolically. 
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Now  suppose  that  the  electron  moves  in  such  a  way  that  its  own  field 

on  the  average  just  neutralises  the  applied  external  field  F'^  in  the  region 
occupied  by  the  electron.  The  value  of  F^v  averaged  for  all  the  elements  of 

charge  constituting  the  electron  is  given  by 

12 

1  e2 

where  \Ja  is  an  average  value  of  l/r12  for  every  pair  of  points  in  the  electron. 
We  may  leave  indeterminate  the  exact  weighting  of  the  pairs  of  points  in 

taking  the  average,  merely  noting  that  a  will  be  a  length  comparable  with 
the  radius  of  the  sphere  throughout  which  the  charge  (or  the  greater  part  of 

it)  is  spread. 

If  this  value  of  F^v  is  equal  and  opposite  to  F'^v,  we  have 

1  e2 t—Av  (A^  —  AVH)  — 
47T  Cb -  eA"F'^v  =  ̂ AV  (A^  -  AVH)  - 

e2 

=  A»AILV.£—   (80-5), 

because  AvAm  =  Av  (A"),.  =  |  (A„A»)n  =  \  (1)M  =  0, 

the  square  of  the  length  of  a  velocity-vector  being  necessarily  unity. 

The  result  (80-5)  will  agree  with  (80-3)  if  the  mass  of  the  electron  is 

m=^-      (80-6). 
47TO. 

The  observed  law  of  motion  of  the  electron  thus  corresponds  to  the  condi- 
tion that  it  can  be  under  no  resultant  electromagnetic  field.  We  must  not 

imagine  that  a  resultant  electromagnetic  force  has  anything  of  a  tugging 
nature  that  can  deflect  an  electron.  It  never  gets  the  chance  of  doing  anything 
to  the  electron,  because  if  the  resultant  field  existed  the  electron  could  not 

exist — it  would  be  an  impossible  structure. 
The  interest  of  this  discussion  is  that  it  has  led  us  to  one  of  the  conditions 

for  the  existence  of  an  electron,  which  turns  out  to  be  of  a  simple  character — 
viz.  that  on  the  average  the  electromagnetic  force  throughout  the  electron 

must  be  zero*.  This  condition  is  clearly  fulfilled  for  a  symmetrical  electron 
at  rest  in  no  field  of  force ;  and  the  same  condition  applied  generally  leads  to 
the  law  of  motion  (801). 

For  the  existence  of  an  electron,  non-Maxwellian  stresses  are  necessary, 

and  we  are  not  yet  in  a  position  to  state  the  laws  of  these  additional  stresses. 
The  existence  of  an  electron  contradicts  the  electromagnetic  laws  with  which 

we  have  to  work  at  present,  so  that  from  the  present  stand  point  an  electron 

at  rest  in  no  external  field  of  force  is  a  miracle.    Our  calculation  shows  thai  an 

*  The  exact  region  of  zero  force  is  not  determined.   The  essential  point  is  that  on  some  critical 
surface  or  volume  the  field  has  to  be  symmetrical  enough  to  give  no  resultant. 
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electron  in  an  external  field  of  force  having  the  acceleration  given  by  (801)  is 

precisely  the  same  miracle.    That  is  as  far  as  the  explanation  goes. 
The  electromagnetic  field  within  the  electron  will  vanish  on  the  average 

if  it  has  sufficient  symmetry.  There  appears  to  be  an  analogy  between  this 
and  the  condition  which  we  found  in  §  56  to  be  necessary  for  the  existence  of 

a  particle,  viz.  that  its  gravitational  field  should  have  symmetrical  properties. 
There  is  further  an  analogy  in  the  condition  determining  the  acceleration  in 

the  two  cases.  An  uncharged  undisturbed  body  takes  such  a  course  that 
relative  to  it  there  is  no  resultant  gravitational  field ;  similarly  an  electron 

takes  such  a  course  that  relative  to  it  there  is  no  resultant  electromagnetic 

field.  We  have  given  a  definite  reason  for  the  gravitational  symmetry  of  a 

particle,  viz.  because  in  practical  measurement  it  is  itself  the  standard  of 

symmetry ;  I  presume  that  there  is  an  analogous  explanation  of  the  electrical 

symmetry  of  an  electron,  but  it  has  not  yet  been  formulated.  The  following 

argument  (which  should  be  compared  with  §§  64,  6G)  will  show  where  the 
difficulty  occurs. 

The  analogue  of  the  interval  is  the  flux  F^dS^.  As  the  interval  between 
two  adjacent  points  is  the  fundamental  invariant  of  mechanics,  so  the  flux 

through  a  small  surface  is  the  fundamental  invariant  of  electromagnetism. 

Two  electrical  systems  will  be  alike  observational ly  if,  and  only  if,  all  corre- 
sponding fluxes  are  equal.  Equality  of  flux  can  thus  be  tested  absolutely ;  and 

different  fluxes  can  be  measured  (according  to  a  conventional  code)  by  apparatus 

constituted  with  electrical  material.  From  the  flux  we  can  pass  by  mathe- 

matical processes  to  the  charge-and-current  vector,  and  this  enables  us  to  make 
the  second  contact  between  mathematical  theory  and  the  actual  world,  viz.  the 

identification  of  electricity.  We  should  now  complete  the  cycle  by  showing 
that  with  electricity  so  defined  apparatus  can  be  constructed  which  will  measure 

the  original  flux.  Here,  however,  the  analogy  breaks  down,  at  least  temporarily. 

The  use  of  electricity  for  measuring  electromagnetic  fluxes  requires  discon- 
tinuity, but  this  discontinuity  is  obtained  in  practice  by  complicated  conditions 

such  as  insulation,  constant  contact  differences  of  potential,  etc.  We  do  not 

seem  able  to  reduce  the  theory  of  electrical  measurement  to  direct  dependence 

on  an  innate  discontinuity  of  electrical  charge  in  the  same  way  that  geometrical 

measurement  depends  on  the  discontinuity  of  matter.  For  this  reason  the  last 

chain  of  the  cycle  is  incomplete,  and  it  does  not  seem  permissible  to  deduce 

that  the  discontinuous  unit  of  electric  charge  must  become  the  standard  of 

electrical  symmetry  in  the  same  way  that  the  discontinuous  unit  of  matter 

(turned  in  different  orientations)  becomes  the  standard  of  geometrical  sym- 
metry. 

According  to  (80-6)  the  mass  of  the  electron  is  e2/4nra,  where  a  is  a  length 
comparable  with  the  radius  of  the  electron.  This  is  in  conformity  with  the 

usual  view  as  to  the  size  of  an  electron,  and  is  opposed  to  the  point-electron 
suggested  in  §  78  as  an  alternative.    But  the  mass  here  considered  is  a  purely 
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electromagnetic  constant,  which  only  enters  into  equations  in  which  electro- 

magnetic forces  are  concerned.  When  the  right-hand  side  of  (801)  vanishes, 
the  electron  describes  a  geodesic  just  as  an  uncharged  particle  would;  but 
m  is  now  merely  a  constant  multiplier  which  can  be  removed.  We  have  still  to 
find  the  connection  between  this  electromagnetic  mass 

me  =  e-/4>Tra       (80-71) 

and  the  gravitational  (i.e.  gravitation-producing)  mass  mg,  given  by 

mgd8  =  ̂-fG^^gdr    (80*72). 

Since  we  believe  that  all  negative  electrons  are  precisely  alike,  r>ig/me  will 
be  a  constant  for  the  negative  electron ;  similarly  it  will  be  a  constant  for  the 

positive  electron.  But  positive  and  negative  electrons  are  structures  of  very 

different  kinds,  and  it  does  not  follow  that  mg/me  is  the  same  for  both.  As  a 
matter  of  fact  there  is  no  experimental  evidence  which  suggests  that  the  ratio 

is  the  same  for  both.  Any  gravitational  field  perceptible  to  observation  is 

caused  by  practically  equal  numbers  of  positive  and  negative  electrons,  so  that 

no  opportunity  of  distinguishing  their  contributions  occurs.  If,  however,  we 

admit  that  the  principle  of  conservation  of  energy  is  universally  valid  in  cases 

where  the  positive  and  negative  electrons  are  separated  to  an  extent  never 

yet  realised  experimentally,  it  is  possible  to  prove  that  mg/me  is  the  same  for 
both  kinds. 

From  the  equation  (80-l)  we  deduce  the  value  of  the  electromagnetic 
energy-tensor  as  in  §§  76,  77  ;  only,  E*v  will  not  be  expressed  in  the  same 

units  as  the  whole  energy-tensor  (■?£  -  \gv^  G,  since  the  mass  appearing  in  (801) 
is  me  instead  of  mg.  In  consequence,  the  law  for  empty  space  (776)  must  be 
written 

Gl  -  W.G  =  -  8tt 5? (- F™F»a  +  \9;F^Fa,)       (80-8). 

We  can  establish  this  equation  firstly  by  considering  the  motion  of  a  positive 

electron  and  secondly  by  considering  a  negative  electron.  Evidently  we  shall 

obtain  inconsistent  equations  in  the  two  cases  unless  mg/me  for  the  positive 

electron  is  the  same  as  for  the  negative  electron.  Unless  this  condition  is  ful- 
filled, we  should  violate  the  law  of  conservation  of  energy  and  momentum  by 

first  converting  kinetic  energy  of  a  negative  electron  into  free  electromagnetic 

energy  and  then  reconverting  the  free  energy  into  kinetic  energy  of  a  positive 
electron. 

Accordingly  mgfme  is  a  constant  of  nature  and  it  may  be  absorbed  in 

equation  (808)  by  properly  choosing  the  unit  of  FM„. 

81.    Electromagnetic  volume. 

If  o^p  is  any  tensor,  the  determinant  \allv\  is  transformed  according  to  the 
law 

E.  1 3 
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by  (48,8),  whence  it  follows  as  in  (49*3)  that 

^(\a,v\)dr    (81-1) 

for  any  four-dimensional  region  is  an  invariant. 
We  have  already  considered  the  case  atlv  =  g^v,  and  it  is  natural  now  to 

consider  the  case  aM„  =  F^.  Since  the  tensor  g„v  defines  the  metric  of  space- 

time,  and  the  corresponding  invariant  is  the  metrical  volume  (natural  volume) 

of  the  region,  it  seems  appropriate  to  call  the  invariant 

Ve^f^F^Ddr    (81-2) 
the  electromagnetic  volume  of  the  region.    The  resemblance  to  metrical  volume 

is  purely  analytical. 

Since  |  F^  |  is  a  skew-symmetric  determinant  of  even  order,  it  is  a  perfect 

square,  and  (81*2)  is  rational.    It  easily  reduces  to 

Ve=j(F.23Fu  +  F31F2i  +  F12F3i)dr   (81-31). 
In  Galilean  coordinates  this  becomes 

Ve=I(aX  +  l3Y+yZ)dT       (81-32). 

It  is  somewhat  curious  that  the  scalar-product  of  the  electric  and  magnetic 
forces  is  of  so  little  importance  in  the  classical  theory,  for  (81/32)  would  seem 
to  be  the  most  fundamental  invariant  of  the  field.  Apart  from  the  fact  that 

it  vanishes  for  electromagnetic  waves  propagated  in  the  absence  of  any  bound 

electric  field  (i.e.  remote  from  electrons),  this  invariant  seems  to  have  no  sig- 
nificant properties.  Perhaps  it  may  turn  out  to  have  greater  importance  when 

the  study  of  electron-structure  is  more  advanced. 

From  (81-31)  we  have 
d/ex  d/c.2     dKx  d/c2 

6     J       \dxA  dx3     dx3  dxj 

the  summation  being  for  all  permutations  of  the  suffixes 

d   (     9/e2\       3  (     d/Co 

J  " \dx4\    * <W      dx3\    1dxJ) 
Hence  Ve  reduces  to  a  surface-integral  over  the  boundary  of  the  region,  and 

it  is  useless  to  consider  its  variations  by  the  Hamiltonian  method.    The  electro- 

magnetic volume  of  a  region  is  of  the  nature  of  a  flux  through  its  three- 
dimensional  boundary. 

82.    Macroscopic  equations. 

For  macroscopic  treatment  the  distribution  and  motion  of  the  electrons  are 

averaged,  and  the  equivalent  continuous  distribution  is  described  by  two  new 

quantities 
the  electric  displacement,  P,  Q,  R, 

the  magnetic  induction,  a,  b,  c, 
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in  addition  to 
the  electric  force,  X,  Y,  Z, 
the  magnetic  force,  a,  /3,  y. 

These  are  grouped  cross-wise  to  form  the  two  principal  electromagnetic  tensors 
#>"=     0  -7        /3        P     (821). 

7 

-/3 

-P 

Ht*v  now  plays  the  part  previously  taken  by  F^";  but  it  is  no  longer  derived 
from  PM„  by  a  mere  raising  of  suffixes.  The  relation  between  the  two  tensors 

is  given  by  the  constitutive  equations  of  the  material ;  in  simple  cases  it  is 

specified  by  two  constants,  the  specific  inductive  capacity  k  and  the  per- 
meability fA. 

Equations  (73'73)  and  (73-74)  are  replaced  by 

M"     dxv      dxA   (82-2). 
Htv  =  J»  J 

These  represent  the  usual  equations  of  the  classical  theory.  It  should  be 

noticed  that  dHjdy  —  dG/dz  is  now  a,  not  a. 
In  the  simple  case  the  constitutive  equations  are 

(P,  Q,  R)  =  K(X,  Y,  Z);     (a,  b,  c)  =  /*(aJ  &  7)   (82-3), so  that 

H11,  #12 . . .  H33  =  -  (Fn,  F^  ...  P'3);    Hu,  H2i,  HSi  =  K (Fu,  P24,  P34). 

A1 

These  simplified  equations  are  not  of  tensor  form,  and  refer  only  to  coordinates 

with  respect  to  which  the  material  is  at  rest.    For  general  coordinates  the 

constitutive  equations  must  be  of  the  form 
#>"  =p^p^FaP, 

where  p**  is  a  tensor. 

The  law  of  conservation  of  electric  charge  can  be  deduced  from  H^  =  Jlt 
just  as  in  (7376). 

The  macroscopic  method  is  introduced  for  practical  purposes  rather  than 

as  a  contribution  to  the  theory,  and  there  seems  to  be  no  advantage  in  de- 
veloping it  further  here.  The  chief  theoretical  interest  lies  in  the  suggestion 

of  a  possible  generalisation  of  Maxwell's  theory  by  admitting  that  the  covariant 
and  contra  variant  electromagnetic  tensors  may  in  certain  circumstances  be 
independent  tensors,  e.g.  inside  the  electron.  This  is  the  basis  of  a  theory  of 
matter  developed  by  G.  Mie. 

13     ■_' 



CHAPTER  VII 

WORLD  GEOMETRY 

Part  I.   Weyl's  Theory 

83.    Natural  geometry  and  world  geometry. 

Graphical  representation  is  a  device  commonly  employed  in  dealing  with 

all  kinds  of  physical  quantities.  It  is  most  often  used  when  we  wish  to  set 
before  ourselves  a  mass  of  information  in  such  a  way  that  the  eye  can  take  it 

in  at  a  glance;  but  this  is  not  the  only  use.  We  do  not  always  draw  the  graphs 

on  a  sheet  of  paper;  the  method  is  also  serviceable  when  the  representation 

is  in  a  conceptual  mathematical  space  of  any  number  of  dimensions  and  pos- 
sibly non-Euclidean  geometry.  One  great  advantage  is  that  when  the  graphical 

representation  has  been  made,  an  extensive  geometrical  nomenclature  becomes 

available  for  description — straight  line,  gradient,  curvature,  etc. — and  a  self- 
explanatory  nomenclature  is  a  considerable  aid  in  discussing  an  abstruse 

subject. 

It  is  therefore  reasonable  to  seek  enlightenment  by  giving  a  graphical 

representation  to  all  the  physical  quantities  with  which  we  have  to  deal.  In 

this  way  physics  becomes  geometrised.  But  graphical  representation  does  not 

assume  any  hypothesis  as  to  the  ultimate  nature  of  the  quantities  represented. 

The  possibility  of  exhibiting  the  whole  world  of  physics  in  a  unified  geometrical 

representation  is  a  test  not  of  the  nature  of  the  world  but  of  the  ingenuity  of 
the  mathematician. 

There  is  no  special  rule  for  representing  physical  quantities  such  as  electric 

force,  potential,  temperature,  etc. ;  we  may  draw  the  isotherms  as  straight 

lines,  ellipses,  spheres,  according  to  convenience  of  illustration.  But  there  are 

certain  physical  quantities  (i.e.  results  of  operations  and  calculations)  which 

have  a  natural  graphical  representation  ;  we  habitually  think  of  them  graphi- 
cally, and  are  almost  unconscious  that  there  is  anything  conventional  in  the 

way  we  represent  them.  For  example,  measured  distances  and  directions  are 

instinctively  conceived  by  us  graphically ;  and  the  space  in  which  we  repre- 
sent them  is  for  us  actual  space.  These  quantities  are  not  in  their  intrinsic 

nature  dissimilar  from  other  physical  quantities  which  are  not  habitually  repre- 
sented geometrically.  If  we  eliminated  the  human  element  (or  should  we  not 

say,  the  pre-human  element  ?)  in  natural  knowledge  the  device  of  graphical 
representation  of  the  results  of  measures  or  estimates  of  distance  would  appear 

just  as  artificial  as  the  graphical  representation  of  thermometer  readings.  We 

cannot  predict  that  a  superhuman  intelligence  would  conceive  of  distance  in 

the  way  we  conceive  it ;  he  would  perhaps  admit  that  our  device  of  mentally 
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plotting  the  results  of  a  survey  in  a  three-dimensional  space  is  ingenious  and 
scientifically  helpful,  but  it  would  not  occur  to  him  that  this  space  was  more 
actual  than  the  pv  space  of  an  indicator-diagram. 

In  our  previous  work  we  have  studied  this  unsophisticated  graphical  repre- 
sentation of  certain  physical  quantities,  under  the  name  Natural  Geometry ; 

we  have  slightly  extended  the  idea  by  the  addition  of  a  fourth  dimension  to 

include  time;  and  we  have  found  that  not  only  the  quantities  ordinarily 
regarded  as  geometrical  but  also  mechanical  quantities,  such  as  force,  density, 

energy,  are  fully  represented  in  this  natural  geometry.  For  example  the  energy- 
tensor  was  found  to  be  made  up  of  the  Gaussian  curvatures  of  sections  of  actual 

space-time  (6572).  But  the  electromagnetic  quantities  introduced  in  the  pre- 
ceding chapter  have  not  as  yet  been  graphically  represented  ;  the  vector  a:m  was 

supposed  to  exist  in  actual  space,  not  to  be  the  measure  of  any  property  of  actual 

space.    Thus  up  to  the  present  the  geometrisation  of  physics  is  not  complete. 

Two  possible  ways  of  generalising  our  geometrical  outlook  are  open.  It 
may  be  that  the  Riemannian  geometry  assigned  to  actual  space  is  not  exact ; 

and  that  the  true  geometry  is  of  a  broader  kind  leaving  room  for  the  vector 

Kp  to  play  a  fundamental  part  and  so  receive  geometrical  recognition  as  one 

of  the  determining  characters  of  actual  space.  For  reasons  which  will  appear 
in  the  course  of  this  chapter,  I  do  not  think  that  this  is  the  correct  solution. 

The  alternative  is  to  give  all  our  variables,  including  k^,  a  suitable  graphical 

representation  in  some  new  conceptual  space — not  actual  space.  With  sufficient 
ingenuity  it  ought  to  be  possible  to  accomplish  this,  for  no  hypothesis  is  implied 
as  to  the  nature  of  the  quantities  so  represented.  This  generalised  graphical 

scheme  may  or  may  not  be  helpful  to  the  progress  of  our  knowledge  ;  we 

attempt  it  in  the  hope  that  it  will  render  the  interconnection  of  electromag- 
netic and  gravitational  phenomena  more  intelligible.  I  think  it  will  be  found 

that  this  hope  is  not  disappointed. 

In  Space,   Time  and  Gravitation,  Chapter  xi,  Weyl's  non-Riemannian 
geometry  has   been    regarded    throughout   as    expressing  an  amended   and 

exact  Natural  Geometry.     That  was  the  original  intention  of  his  theory*. 
For  the  present  we  shall  continue  to  develop  it  on  this  understanding.    But 

we  shall  ultimately  come  to  the  second  alternative,  as  Weyl  himself  has  done, 

and  realise  that  his  non-Riemannian  geometry  is  not  to  be  applied  to  actual 

space-time ;  it  refers  to  a  graphical  representation  of  that  relation-structure 
which  is  the  basis  of  all  physics,  and  both  electromagnetic  and  metrical 

variables  appear  in  it  as  interrelated.    Having  arrived  at  this  standpoint  we 

pass  naturally  to  the  more  general  geometry  of  relation-structure  develoj  >.  •  i 
in  Part  II  of  this  chapter. 

*  The  original  paper  (Berlin.  Sitzungsberichte,  30  May  1918)  is  ratlin-  obscure  on  this  point. 
It  states  the  mathematical  development  of  the  corrected  Riemannian  geometry — "the  phj 
application  is  obvious."   But  it  is  explicitly  stated  that  the  absence  of  an  electromagnetic  field  is 
the  necessary  condition  for  Einstein's  theory  to  be  valid — an  opinion  which,  I  think,  is  no  Longei 
held. 
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We  have  then  to  distinguish  between  Natural  Geometry,  which  is  the 

single  true  geometry  in  the  sense  understood  by  the  physicist,  and  World 
Geometry,  which  is  the  pure  geometry  applicable  to  a  conceptual  graphical 

representation  of  all  the  quantities  concerned  in  physics.  We  may  perhaps  go 
so  far  as  to  say  that  the  World  Geometry  is  intended  to  be  closely  descriptive 
of  the  fundamental  relation-structure  which  underlies  the  various  manifesta- 

tions of  space,  time,  matter  and  "electromagnetism ;  that  statement,  however, 
is  rather  vague  when  we  come  to  analyse  it.  Since  the  graphical  representation 
is  in  any  case  conventional  we  cannot  say  that  one  method  rather  than  another 

is  right.  Thus  the  two  geometries  discussed  in  Parts  I  and  II  of  this  chapter 

are  not  to  be  regarded  as  contradictory.  My  reason  for  introducing  the  second 

treatment  is  that  I  find  it  to  be  more  illuminating  and  far-reaching,  not  that 
I  reject  the  first  representation  as  inadmissible. 

In  the  following  account  of  Weyl's  theory  I  have  not  adhered  to  the  author's 
order  of  development,  but  have  adapted  it  to  the  point  of  view  here  taken  up, 

which  sometimes  differs  (though  not,  I  believe,  fundamentally)  from  that  which 

he  adopts.  It  may  be  somewhat  unfair  to  present  a  theory  from  the  wrong 

end — as  its  author  might  consider ;  but  I  trust  that  my  treatment  has  not 
unduly  obscured  the  brilliance  of  what  is  unquestionably  the  greatest  advance 

in  the  relativity  theory  after  Einstein's  work. 
84.    Non-integrability  of  length. 

We  have  found  in  §  33  that  the  change  8 A^  of  a  vector  taken  by  parallel 
displacement  round  a  small  circuit  is ^r 

oAf,,  =  \  (Apw  —  Anw)  dbV(T 
^—  "o    -0 1^1/(7  -^ig  (XO 

^kB^A'dS"    (841). 

Hence  Ai*SAn  =  ±  B^A^A'dS""  =  0, 
since  Bllvve  is  antisymmetrical  in  /j,  and  e. 

Hence  by  (26*4)  SJM  is  perpendicular  to  A^,  and  the  length  of  the  vector 
-4M  is  unaltered  by  its  parallel  displacement  round  the  circuit.  It  is  only  the 
direction  which  changes. 

We  endeavoured  to  explain  how  this  change  of  direction  can  occur  in  a 

curved  world  by  the  example  of  a  ship  sailing  on  a  curved  ocean  (§  33).  Having 
convinced  ourselves  that  there  is  no  logical  impossibility  in  the  result  that  the 

direction  changes,  we  cannot  very  well  see  anything  self-contradictory  in  the 
length  changing  also.  It  is  true  that  we  have  just  given  a  mathematical  proof 

that  the  length  does  not  change  ;  but  that  only  means  that  a  change  of  length 

is  excluded  by  conditions  which  have  been  introduced,  perhaps  inadvertently, 

in  the  postulates  of  Riemannian  geometry.  We  can  construct  a  geometry  in 

which  the  change  of  length  occurs,  without  landing  ourselves  in  a  contradiction. 

In  the  more  general  geometry,  we  have  in  place  of  (84*1) 

BA^^B^.A'dS"    (84-21), 
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where  *Blivae  is  a  more  general  tensor  which  is  not  antisymmetrical  in  fj.  and 
e.  It  will  be  antisymmetrical  in  v  and  a  since  a  symmetrical  part  would  be 

meaningless  in  (8421),  and  disappear  owing  to  the  antisymmetry  of  dS"*. 
Writing 

BA^^B^^  +  F^A'dS"   (84-22), 
where  R  is  antisymmetrical,  and  F  symmetrical,  in  fi  and  e. 

Then  the  change  of  length  I  is  given  by 

B(P)=M*SAll  =  FlunA'>A'd&"    (84-3), 
which  does  not  vanish. 

To  obtain  Weyl's  geometry  we  must  impose  two  restrictions  on  F^va<, : 
(a)  FliVO€  is  of  the  special  form  g^F^, 
(b)  Fva  is  the  curl  of  a  vector. 

The  second  restriction  is  logically  necessary.  We  have  expressed  the  change 

of  a  vector  taken  round  a  circuit  by  a  formula  involving  a  surface  bounded  by 
the  circuit.  We  may  choose  different  surfaces,  all  bounded  by  the  same  circuit ; 

and  these  have  to  give  the  same  result  for  BA^.  It  is  easily  seen,  as  in  Stokes's 
theorem,  that  these  results  will  only  be  consistent  if  the  co-factor  of  dSv<r  is  a 
curl. 

The  first  restriction  is  not  imperatively  demanded,  and  we  shall  discard  it 

in  Part  II  of  this  chapter.    It  has  the  following  effect.    Equation  (84-3)  becomes 

8(l*)  =  F„r.glleAi*A<.dS"' 

=  FvalHlSv°, 

so  that  j=\FvadSv°   (84-4). 

The  change  of  length  is  proportional  to  the  original  length  and  is  independent 

of  the  direction  of  the  vector ;  whereas  in  the  more  general  formula  (84'3)  the 
change  of  length  depends  on  the  direction. 

One  result  of  the  restriction  is  that  zero-length  is  still  zero-length  after 

parallel  displacement  round  a  circuit.  If  we  have  identified  zero-length  at  one 
point  of  the  world  we  can  transfer  it  without  ambiguity  to  every  other  point 

and  so  identify  zero-length  everywhere.  Finite  lengths  cannot  be  transferred 
without  ambiguity;  a  route  of  parallel  displacement  must  be  specified. 

Zero-length  is  of  great  importance  in  optical  phenomena,  because  in 

Einstein's  geometry  any  element  of  the  track  of  a  light-pulse  is  a  vector  of 
zero-length  ;  so  that  if  there  were  no  definite  zero-length  a  pulse  of  light  would 

not  know  what  track  it  ought  to  take.  It  is  because  Weyl's  theory  makes  no 

attempt  to  re-interpret  this  part  of  Einstein's  theory  that  an  absolute  zero- 
length  is  required,  and  the  restriction  («)  is  therefore  imposed. 

Another  result  of  the  restriction  is  that  lengths  at  tho  same  point  but  in 

different  orientations  become  comparable  without  ambiguity.  The  ambiguity 

is  limited  to  the  comparison  of  lengths  at  different  places. 
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85.    Transformation  of  gauge-systems. 

According  to  the  foregoing  section  it  is  not  possible  to  compare  lengths 

(except  zero-length)  at  different  places,  because  the  result  of  the  comparison 
will  depend  on  the  route  taken  in  bringing  the  two  lengths  into  juxtaposition. 

In  Riemannian  geometry  we  have  taken  for  granted  this  possibility  of 

comparing  lengths.  The  interval  at  any  point  has  been  assigned  a  definite 
value,  which  implies  comparison  with  a  standard ;  it  did  not  occur  to  us  to 
question  how  this  comparison  at  a  distance  could  be  made.  We  have  now  to 

define  the  geometry  of  the  continuum  in  a  way  which  recognises  this  difficulty. 

We  suppose  that  a  definite  but  arbitrary  gauge-system  has  been  adopted  ; 

that  is  to  say,  at  every  point  of  space-time  a  standard  of  interval-length  has 
been  set  up,  and  every  interval  is  expressed  in  terms  of  the  standard  at  the 

point  where  it  is.  This  avoids  the  ambiguity  involved  in  transferring  intervals 

from  one  point  to  another  to  compare  with  a  single  standard. 

Take  a  displacement  at  P  (coordinates,  a^)  and  transfer  it  by  parallel  dis- 

placement to  an  infinitely  near  point  P'  (coordinates,  x„.  +  dx^).  Let  its  initial 
length  measured  by  the  gauge  at  P  be  I,  and  its  final  length  measured  by  the 

gauge  at  P'  be  I  +  dl.    We  may  express  the  change  of  length  by  the  formula 

d  (log  I)  =  K^dx,i   (851), 

where  *>  represents  some  vector-field.  If  we  alter  the  gauge-system  we  shall, 
of  course,  obtain  different  values  of  I,  and  therefore  of /cM. 

It  is  not  necessary  to  specify  the  route  of  transfer  for  the  small  distance 

P  to  P'.  The  difference  in  the  results  obtained  by  taking  different  routes  is 
by  (84-4)  proportional  to  the  area  enclosed  by  the  routes,  and  is  thus  of  the 

second  order  in  dx^.  As  PP'  is  taken  infinitely  small  this  ambiguity  becomes 
negligible  compared  with  the  first-order  expression  K^dx^. 

Our  system  of  reference  can  now  be  varied  in  two  ways — by  change  of 

coordinates  and  by  change  of  gauge-system.  The  behaviour  of  g^  and  *M  for 
transformation  of  coordinates  has  been  fully  studied  ;  we  have  to  examine  how 

they  will  be  transformed  by  a  transformation  of  gauge. 

A  new  gauge-system  will  be  obtained  by  altering  the  length  of  the  standard 
at  each  point  in  the  ratio  X,  where  X  is  an  arbitrary  function  of  the  coordinates. 

If  the  standard  is  decreased  in  the  ratio  X,  the  length  of  a  displacement  will 
be  increased  in  the  ratio  X.   If  accents  refer  to  the  new  system 

ds'  =  Xds      (85-2). 

The  components  dx^  of  a  displacement  will  not  be  changed,  since  we  are  not 

altering  the  coordinate-system,  thus 

dx/  =  dx^    (85-3). 

Hence  g 'M„  dx,,'  dxv'  =  ds'2  =  X2  ds2  =  X2g^  dx„  dxv  =  X2g„,  dxj  dxj, 

so  that  ff„  =  \*gt   (85-41). 
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It  follows  at  once  that  g  =  \sg     (85*42 ), 
r/V"  =  x-V"    (85-43), 

V - g'  .dr  =X* *J^g .dr   (85*44). 

Again,  by  (85*1)  ic^dx^  =  d  (log  V)  =  d  {log  (XI)} 
=  d(logl)  +  d(\og\) 

=  K^da-n  +  - \    -  - dx.. 

Or,  writing  <£-log\   (85-51), 

then  k/^^+J?        (85-52). 

The  curl  of  k^  has  an  important  property ;  if 

F    =  —  —  ̂~ F"     dxv      dx^ ' 

we  see  by  (85-52)  that  F'^^F^      (85-6), 

so  that  F^  is  independent  of  the  gauge -system.  This  is  only  true  of  the  co- 
variant  tensor;  if  we  raise  one  or  both  suffixes  the  function  A,  is  introduced 

by  (85  43). 
It  will  be  seen  that  the  geometry  of  the  continuum  now  involves  14  functions 

which  vary  from  point  to  point,  viz.  ten  g^v  and  four  k^.  These  may  be  sub- 
jected to  transformations,  viz.  the  transformations  of  gauge  discussed  above, 

and  the  transformations  of  coordinates  discussed  in  Chapter  II.  Such  trans- 
formations will  not  alter  any  intrinsic  properties  of  the  world ;  but  any  changes 

in  the  g^  and  k^  other  than  gauge  or  coordinate  transformations  will  alter  the 

intrinsic  state  of  the  world  and  may  reasonably  be  expected  to  change  its 

physical  manifestations. 

The  question  then  arises,  How  will  the  change  manifest  itself  physically  if 
we  alter  the  «>?  All  the  phenomena  of  mechanics  have  been  traced  to  the  ghV, 

so  that  presumably  the  change  is  not  shown  in  mechanics,  or  at  least  the 

primary  effect  is  not  mechanical.  We  are  left  with  the  domain  of  electro- 
magnetism  which  is  not  expressible  in  terms  o{ g^  alone;  and  the  suggestion 
arises  that  an  alteration  of  «M  may  appear  physically  as  an  alteration  of  the 
electromagnetic  field. 

We  have  seen  that  the  electromagnetic  field  is  described  by  a  vector  already 

called  k^,  and  it  is  an  obvious  step  to  identify  this  with  the  «-M  introduced  in 

Weyl's  geometry.  According  to  observation  the  physical  condition  of  the  w  i  >rld 
is  not  completely  defined  by  the  #M„  and  an  additional  vector  must  be  specified; 

according  to  theoretical  geometry  the  nature  of  a  continuum  is  not  completely 

indicated  by  the  g^  and  an  additional  vector  must  be  specified.  The  con- 
clusion is  irresistible  that  the  two  vectors  are  to  be  identified. 

Moreover  according  to  (85'52)  we  can  change  *M  to  «M  +  dcf>  das„  by  a  change 
of  gauge  without  altering  the  intrinsic  state  of  the  world.    It  was  explained  at 
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the  beginning  of  §  74  that  we  can  make  the  same  change  of  the  electromagnetic 

potential  without  altering  the  resulting  electromagnetic  field. 
We  accordingly  accept  this  identification.  The  /eM  and  FM„  of  the  present 

geometrical  theory  will  be  the  electromagnetic  potential  and  force  of  Chapter  VI. 

It  will  be  best  to  suspend  the  convention  re*  =  0  (74-l)  for  the  present,  since 
that  would  commit  us  prematurely  to  a  particular  gauge-system. 

It  must  be  borne  in  mind  that  by  this  identification  the  electromagnetic 
force  becomes  expressed  in  some  natural  unit  whose  relation  to  the  c.G.s. 

system  is  at  present  unknown.  For  example  the  constant  of  proportionality 

in  (77'7)  may  be  altered.  F^  is  not  altered  by  any  change  of  gauge-system 

(85-6)  so  that  its  value  is  a  pure  number.  The  question  then  arises,  How  many 
volts  per  centimetre  correspond  to  F^  =  1  in  any  given  coordinate-system  ? 
The  problem  is  a  difficult  one,  but  we  shall  give  a  rough  and  rather  dubious 
estimate  in  §  102. 

I  do  not  think  that  our  subsequent  discussion  will  add  anything  material 

to  the  present  argument  in  favour  of  the  electromagnetic  interpi'etation  of  k^. 
The  case  rests  entirely  on  the  apparently  significant  fact,  that  on  removing  an 

artificial  restriction  in  Riemannian  geometry,  we  have  just  the  right  number 

of  variables  at  our  disposal  which  are  necessary  for  a  physical  description  of 
the  world. 

86.    Gauge-invariance. 

It  will  be  useful  to  discover  tensors  and  invariants  which,  besides  possessing 
their  characteristic  properties  with  regard  to  transformations  of  coordinates, 

are  unaltered  by  any  transformation  of  gauge-system.  These  will  be  called 
in-tensors  and  in-invariants. 

There  are  other  tensors  or  invariants  which  merely  become  multiplied  by 

a  power  of  A,  when  the  gauge  is  altered.  These  will  be  called  co-tensors  and 
co-invariants. 

Change  of  gauge  is  a  generalisation  of  change  of  unit  in  physical  equations, 

the  unit  being  no  longer  a  constant  but  an  arbitrary  function  of  position.  We 

have  only  one  unit  to  consider — the  unit  of  interval.  Coordinates  are  merely 

identification-numbers  and  have  no  reference  to  our  unit,  so  that  a  displace- 

ment dx^  is  an  in-vector.  It  should  be  noticed  that  if  we  change  the  unit-mesh 
of  a  rectangular  coordinate-system  from  one  mile  to  one  kilometre,  we  make 
a  change  of  coordinates  not  a  change  of  gauge.  The  distinction  is  more  obvious 
when  coordinates  other  than  Cartesian  are  used.  The  most  confusing  case  is 

that  of  Galilean  coordinates,  for  then  the  special  values  of  the  g^  fix  the  length 

of  side  of  unit  mesh  as  equal  to  the  unit  of  interval ;  and  it  is  not  easy  to  keep 
in  mind  that  the  displacement  between  two  corners  of  the  mesh  is  the  number 
1,  whilst  the  interval  between  them  is  1  kilometre. 

According  to  (85'6)  the  electromagnetic  force  F^v  is  an  in-tensor.  F*v  is 
only  a  co-tensor,  and  F^F^  a  co-invariant. 



85,  86  GAUGE-INVARIANCE  203 

Transforming  the  3-index  symbol  [/j,v,  a]  by  an  alteration  of  gauge  we  have 
by  (85  41) 

[fiv,  ay = -  ( d  (x'^y)  +  a(X2^>  _  W/U 
2  V     dxv  dx„  dx„ 

p,  \j«ja 

-  v  [„„,  «■] + to„  j-  +  to  3-  -  to-  a- 

=  X2  [^,  o-]  +  X2  (g^4>„  +  (jvafa-g^fa) 

by  (85-51).    We  have  written  fa  =  M . 

Multiply  through  by  #,<7a  =  A.~2(/Ta ;  we  obtain 

{/«>,  «}'={/"'>  ai+^^  +  ̂ ^-^M^"      (86>1)- 

Lefc  *{/«*,  «}=  W,  «}-9lK,-9tK*+9^      (86-2). 

Then  by  (861)  and  (85*52) 

•{/■«-,  a}'  =  *W,  a}      (86-3). 

The  "generalised  3-index  symbol"  *{//,*•,  a}  has  the  "in-"  property,  being 
unaltered  by  any  gauge-transformation.    It  is,  of  course,  not  a  tensor. 

We  shall  generally  indicate  by  a  star  (*)  quantities  generalised  from  cor- 
responding expressions  in  Riemannian  geometry  in  order  to  be  independent  of 

(or  covariant  with)  the  gauge-system.  The  following  illustrates  the  general 
method  of  procedure. 

Let  Av^  be  a  symmetrical  in-tensor;  its  divergence  (5131)  becomes  on 
gauge-transformation 

»J  -  gdxv      *         J        2         dx„         M    X4  dxv     -        "*       X-dx^ 

=  A;i/  +  4,A;<f>v-Afa. 

Hence  by  (85-52)  the  quantity 

*A^=Al-^AvfJ_K„  +  AK(l   (80-4) 

is  unaltered  by  any  gauge-transformation,  and  is  accordingly  an  in-vector. 
This  operation  may  be  called  in-covariant  differentiation,  and  the  result  is 

the  in-divergence. 

The  result  is  modified  if  A*v  is  the  in-tensor,  so  that  A^  is  a  co-tensor.  The 

different  associated  tensors  are  not  equally  fundamental  in  Weyl's  geometry, 
since  only  one  of  them  can  be  an  in-tensor. 

Unless  expressly  stated  a  final  suffix  will  indicate  ordinary  covariant  (not 

in-covariant)  differentiation. 



204  THE  GENERALISED  RIEMANN-CHRISTOFFEL  TENSOR       CH.  VII 

87.    The  generalised  Riemann-Christoffel  tensor. 

Corresponding  to  (34*4)  we  write 

•2C  -  - 1  >,  e,  +  >„,  .]  >„,  .,  +  J-  .  W,  e|  -  .^  „,  •{„. ., 
  (87-1). 

This  will  be  an  in-tensor  since  the  starred  symbols  are  all  independent  of 

the  gauge ;  and  it  will  be  evident  when  we  reach  (87"4)  that  the  generalisa- 
tion has  not  destroyed  the  ordinary  tensor  properties. 

We  consider  the  first  two  terms;  the  complete  expression  can  then  be 

obtained  at  any  stage  by  interchanging  v  and  a  and  subtracting.  The  ad- 

ditional terms  introduced  by  the  stars  are  by  (86'2) 

-  g^(- &**- 9*K*  +  9***)  +  (-91k*~9*k*  +  3W*a)  [av,  e} 

+  (—g'*ic*  -  git*  +  g«vKe)  {h><t,  a}  +  {-gl^-gl^  +  g„.aK°)  (-#««■„  -  gl  Ka  +  gav/ce) 

e  OKv  zUKu  OK  V9uv      .  r  i  r  1  f  1 

-  kv  [llct,  e]  - gl  {lmt,  a]  Ka  +  k*  [fia,  v]  +  fl£  *,  *„  +  gl k„ k^  - gft,vKa tce 

+ ;glfertie9+ glKpKe  —  gtvKy.K* — g^^Ky - g^gl^Ka  +g,,aKvtce  ...(87-2), 
which  is  equivalent  to 

^^  +  gl(icn)a -  SW «><r  +  gl ̂t,Ka  - glg^/c^K*  +  g^Kvtc*.  . . .(87-3). 

[To  follow  this  reduction  let  the  terms  in  (87 "2)  be  numbered  in  order 
from  1  to  19.  It  will  be  found  that  the  following  terms  or  pairs  of  terms  are 

symmetrical  in  v  and  a,  and  therefore  disappear  when  the  expression  is 
completed,  viz.  5  and  8,  6,  11,  12  and  14,  13  and  17,  16.  Further  4  and  10 

together  give  —  [va,  ll\  «e,  which  is  rejected  for  the  same  reason.  We  combine 

2  and  9  to  give  gl  (*?.)<,.  We  exchange  7  for  its  counterpart  —  g^  [aa,  e]  /ca 
in  the  remaining  half  of  the   expression,  and  combine   it   with   3   to  give 

Hence  interchanging  v  and  cr,  and  subtracting,  the  complete  expression  is 

*B^va.  =  2£w  +  gl  \-^  -  ̂   j  +  (gev  K^-gl  tfM„)  +  (g^  k€v  -  g^  K%) 

+  (glKnKa-glKpiCv)  +  (g^g^-glg^x)  KaKa  ■+  (g^^-g^^)  *f...(87-4). 

Next  set  e  =  a.    We  obtain  the  contracted  in-tensor 

Lrfiv  =  Cr^i,         "  fiv  "T  \Kfj_„  —  HiK^)  +  \ZCfL,,        g n.vICa)  ■+•  \Kfj_  K„        4/Cyu  K„) 

+  (4#M„  -  g„v)  KaKa  +  {K„fCv  -  g^K^K0-)    • 

=  G^  —  ̂ F^  —  ̂ ^  +  Ky^—g^Kl-  ^k^kv+  2gfil,KaKa   (87-5 )f. 

f  The  unit  of  k^  is  arbitrary ;  and  in  the  generalised  theory  in  Part  II  the  /cM  there  employed 
corresponds  to  twice  the  k^.  of  these  formulae.  This  must  be  borne  in  mind  in  comparing,  for 

example,  (87 -5)  and  (94-3). 
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Finally  multiply  by  g*v.    We  obtain  the  co-invariant 

*G  =  G-6Kaa  +  GKaK«   (87-0). 

The  multiplication  by  (f-v  reintroduces  the  unit  of  gauge,  so  that  *G 

becomes  multiplied  by  A.~2  when  the  gauge  is  transformed. 
If  the  suffix  e  is  lowered  in  (87 -4)  the  only  part  of  *Blivae  which  is  sym- 

metrical in  fx  and  e  is  g^  ($Kvjdxa  —  dfcc/dxv)  =  gMFva,  which  agrees  with  the 

condition  (a)  of  Weyl's  geometry  (§  84). 

88.    The  in-invariants  of  a  region. 

There  are  no  functions  of  the  g^v  and  km  at  a  point  which  are  in- 

invariants  ;  but  functions  which  are  in-invariant-densities  may  be  found  as 
follows   

Since  V—  g  becomes  multiplied  by  A.4  on  gauge-transformation  we  must 

combine  it  with  co-invariants  which  become  multiplied  by  A.-4.  The  following 
are  easily  seen  to  be  in-invariant-densities : 

(*G)W-g\    *Gllw*G""J-g;    *B^*Br^-g      (88-1), 

F„F*"/^g   (882). 

We  can  also  form  in-invariant-densities  from  the  fundamental  tensor  of 

the  sixth  rank.  Let  *{*Blivap)a^  be  the  second  co-co variant  derivative  of  the 

co-tensor  *B/xuap ;  the  spur  formed  by  raising  three  suffixes  and  contracting 

will  vary  as  X-4  and  give  an  in-invariant-density  on  multiplication  by  V—  g. 
There  are  three  different  spurs,  according  to  the  pairing  of  the  suffixes,  but 
I  believe  that  there  are  relations  between  them  so  that  they  give  only  one 

independent  expression.    The  simplest  of  them  is 

9^rg*\*B^)a^=g~=*n*G  -^   (88-3). 
If  21  stands  for  any  in-invariant-density, 

taken  over  a  four-dimensional  region  is  a  pure  number  independent  of  co- 

ordinate-system and  gauge-system.  Such  a  number  denotes  a  property  of 
the  region  which  is  absolute  in  the  widest  sense  of  the  word ;  and  it  seems 

likely  that  one  or  more  of  these  numerical  invariants  of  the  region  must 

stand  in  a  simple  relation  to  all  the  physical  quantities  which  measure  the 

more  general  properties  of  the  world.  The  simplest  operation  which  we  can 

perform  on  a  regional  invariant  appears  to  be  that  of  Hamiltonian  differen- 

tiation, and  a  particular  importance  will  therefore  be  attached  to  the  tensors 

It  has  been  pointed  out  by  Weyl  that  it  is  only  in  a  four-dimensional 

world  that  a  simple  set  of  regional  in-invariants  of  this  kind  exists.  In  an 

odd  number  of  dimensions  there  are  none;  in  two  dimensions  there  is  one, 

*£\/^;  in  six  or  eight  dimensions  the  in-invariants  are  all  vny  complex 
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involving  derivatives  of  at  least  the  fourth  order  or  else  obviously  artificial. 

This  may  give  some  sort  of  reason  for  the  four  dimensions  of  the  world.    The 
argument  appears  to  be  that  a  world  with  an  odd  number  of  dimensions 

could  contain  nothing  absolute,  which  would  be  unthinkable. 
These  conclusions  are  somewhat  modified  by  the  existence  of  a  particularly 

simple  regional  in-invariant,  which  seems  to  have  been  generally  overlooked 
because  it  is  not  of  the  type  which  investigators  have  generally  studied.    The 

quantity 

/VH*GW}<*t   (88-4) 

is  an  invariant  by  (81*1)  and   it  contains  nothing  which  depends  on   the 
gauge.    It  is  not  more  irrational  than   the   other  in-invariants  since  these 

contain  V—  g.    We  shall  find  later  that  it  is  closely  analogous  to  the  metrical 
volume  and   the  electromagnetic  volume  (§  81)  of  the  region.    It  will   be 

called  the  generalised  volume.    This  in-invariant  would  still  exist  if  the  world 
had  an  odd  number  of  dimensions. 

It  may  be  remarked  that  F*v  V—  g,  or  %>LV,  is  an  in-tensor-density.    Thus 

the  factor  V—  $r  should  always  be  associated  with  the  contravariant  tensor,  if 
the  formulae  are  to  have  their  full  physical  significance.    The  electromagnetic 

action-density  should  be  written 

and  the  energy-density 

-FtJr +  &„¥+%*. 
The  field  is  thus  characterised  by  an  intensity  F^v  or  a  quantity  of  density 

%v* ;  both  descriptions  are  then  independent  of  the  gauge-system  used. 

89.    The  natural  gauge. 

For  the  most  part  the  laws  of  mechanics  investigated  in  Chapters  III — V 

have  been  expressed  by  tensor  equations  but  not  in-tensor  equations.  Hence 

they  can  only  hold  when  a  particular  gauge-system  is  used,  and  will  cease  to 
be  true  if  a  transformation  of  gauge-system  is  made.  The  gauge-system  for 
which  our  previous  work  is  valid  (if  it  is  valid)  is  called  the  natural  gauge; 

it  stands  in  somewhat  the  same  position  with  respect  to  a  general  gauge  as 

Galilean  coordinates  stand  with  respect  to  general  coordinates. 

Just  as  we  have  generalised  the  equations  of  physics  originally  found  for 
Galilean  coordinates,  so  we  could  generalise  the  equations  for  the  natural 

gauge  by  substituting  the  corresponding  in-tensor  equations  applicable  to 
any  gauge.  But  before  doing  so,  we  stop  to  ask  whether  anything  would  be 
gained  by  this  generalisation.  There  is  not  much  object  in  generalising  the 

Galilean  formulae,  so  long  as  Galilean  coordinates  are  available ;  we  required 
the  general  formulae  because  we  discovered  that  there  are  regions  of  the 

world  where  no  Galilean  coordinates  exist.  Similarly  we  shall  only  need  the 

in-tensor  equations  of  mechanics  if  there  are  regions  where  no  natural 

gauge  exists;    that  is   to  say,  if  no  gauge-system  can  be   found  for  which 
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Einstein's  formulae  are  accurately  true.  It  was,  I  think,  the  original  idea  of 
Weyl's  theory  that  electromagnetic  fields  were  such  regions,  where  accordingly 
in-tensor  equations  would  be  essential. 

There  is  in  any  case  a  significant  difference  between  Einstein's  genera- 

lisation of  Galilean  geometry  and  Weyl's  generalisation  of  Riemannian 
geometry.  We  have  proved  directly  that  the  condition  which  renders  Galilean 
coordinates  impossible  must  manifest  itself  to  us  as  a  gravitational  field  of 

force.  That  is  the  meaning  of  a  field  of  force  according  to  the  definition  of  force. 

But  we  cannot  prove  that  the  break-down  of  the  natural  gauge  would  manifest 
itself  as  an  electromagnetic  field ;  we  have  merely  speculated  that  the  world- 

condition  measured  by  the  vector  k^  which  appears  in  the  in-tensor  equations 
may  be  the  origin  of  electrical  manifestations  in  addition  to  causing  the 
failure  of  Riemannian  geometry. 

Accepting  the  original  view  of  Weyl's  theory,  the  ambiguity  in  the 
comparison  of  lengths  at  a  distance  has  hitherto  only  shown  itself  in  practical 

experiments  by  the  electromagnetic  phenomena  supposed  to  be  dependent  on 

it  but  not  (so  far  as  we  can  see)  immediately  implied  by  it.  This  is  not 

surprising  when  we  attempt  to  estimate  the  order  of  magnitude  of  the 

ambiguity.  Taking  formula  (844),  dl/l  =  ̂Flt<rdS'"r,  we  might  perhaps  expect 
that  dl/l  would  be  comparable  with  unity,  if  the  electromagnetic  force  Fva 

were  comparable  with  that  at  the  surface  of  an  electron,  4 .  1018  volts  per  cm., 
and  the  side  of  the  circuit  were  comparable  with  the  radius  of  curvature  of 

space.  Thus  for  ordinary  experiments  dl/l  would  be  far  below  the  limits  of 

experimental  detection.  Accordingly  we  can  have  a  gauge-system  specified 
by  the  transfer  of  material  standards  which  is  for  all  practical  purposes 

unambiguous,  and  yet  contains  that  minute  theoretical  ambiguity  which  is 

only  of  practical  consequence  on  account  of  its  side-manifestation  as  the 

cause  of  electrical  phenomena.  The  gauge-system  employed  in  practice  is 
the  natural  gauge-system  to  which  our  previous  mechanical  formulae  apply — 

or  rather,  since  the  practical  gauge-system  is  slightly  ambiguous  and  the 
theoretical  formulae  are  presumably  exact,  the  natural  gauge  is  an  exact 

gauge  with  which  all  practical  gauges  agree  to  an  approximation  sufficient 
for  all  observable  mechanical  and  metrical  phenomena. 

According  to  Weyl  the  natural  gauge  is  determined  by  the  condition 

*G  =  4\       (891), 

where  A.  is  a  constant  everywhere. 

This  attempt  to  reconcile  a  theoretical  ambiguity  of  our  system  of 

measurement  with  its  well-known  practical  efficiency  seems  to  bo  tenable, 
though  perhaps  a  little  overstrained.  But  an  alternative  view  is  possible. 
This  states  that — 

Comparison  of  lengths  at  different  places  is  an  unambiguous  procedure 

having  nothing  to  do  with  parallel  displacement  of  a  vector. 
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The  practical  operation  of  transferring  a  measuring-scale  from  one  place 
to  another  is  not  to  be  confounded  with  the  transfer  by  parallel  displacement 

of  the  vector  representing  the  displacement  between  its  two  extremities.  If 

this  is  correct  Einstein's  Riemannian  geometry,  in  which  each  interval  has 
a  unique  length,  must  be  accepted  as  exact ;  the  ambiguity  of  transfer  by 

parallel  displacement  does  not  affect  his  work.  No  attempt  is  to  be  made  to 

apply  Weyl's  geometry  as  a  Natural  Geometry ;  it  refers  to  a  different 
subject  of  discussion. 

Prof.  Weyl  himself  has  come  to  prefer  the  second  alternative.  He  draws  a 
useful  distinction  between  magnitudes  which  are  determined  by  persistence 

(Beharrung)  and  by  adjustment  {Einstellung) ;  and  concludes  that  the  di- 
mensions of  material  objects  are  determined  by  adjustment.  The  size  of  an 

electron  is  determined  by  adjustment  in  proportion  to  the  radius  of  curvature 

of  the  world,  and  not  by  persistence  of  anything  in  its  past  history.  This  is 

the  view  taken  in  §  66,  and  we  have  seen  that  it  has  great  value  in  affording 

an  explanation  of  Einstein's  law  of  gravitation. 
The  generalised  theory  of  Part  II  leads  almost  inevitably  to  the  second 

alternative.  The  first  form  of  the  theory  has  died  rather  from  inanition 

than  by  direct  disproof;  it  ceases  to  offer  temptation  when  the  problem  is 

approached  from  a  broader  point  of  view.  It  now  seems  an  unnecessary 

speculation  to  introduce  small  ambiguities  of  length-comparisons  too  small 
to  be  practically  detected,  merely  to  afford  the  satisfaction  of  geometrising 
the  vector  k^  which  has  more  important  manifestations. 

The  new  view  entirely  alters  the  status  of  Weyl's  theory.  Indeed  it  is  no 
longer  a  hypothesis,  but  a  graphical  representation  of  the  facts,  and  its  value 
lies  in  the  insight  suggested  by  this  graphical  representation.  We  need  not 
now  hesitate  for  a  moment  over  the  identification  of  the  electromagnetic 

potential  with  the  geometrical  vector  a-m ;  the  geometrical  vector  is  the 
potential  because  that  is  the  way  in  which  we  choose  to  represent  the 

potential  graphically.  We  take  a  conceptual  space  obeying  Weyl's  geometry 
and  represent  in  it  the  gravitational  potential  by  the  g^v  for  that  space  and 

the  electromagnetic  potential  by  the  k^  for  that  space.  We  find  that  all 

other  quantities  concerned  in  physics  are  now  represented  by  more  or  less 

simple  geometrical  magnitudes  in  that  space,  and  the  whole  picture  enables 

us  to  grasp  in  a  comprehensive  way  the  relations  of  physical  quantities, 

and  more  particularly  those  reactions  in  which  both  electromagnetic  and 
mechanical  variables  are  involved.  Parallel  displacement  of  a  vector  in  this 

space  is  a  definite  operation,  and  may  in  certain  cases  have  an  immediate 

physical  interpretation ;  thus  when  an  uncharged  particle  moves  freely  in  a 

geodesic  its  velocity-vector  is  carried  along  by  parallel  displacement  (33*4)  ; 
but  when  a  material  measuring-rod  is  moved  the  operation  is  not  one  of 
parallel  displacement,  and  must  be  described  in  different  geometrical  terms, 

which  have  reference  to  the  natural  gauging-equation  (89"1). 
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When  in  Part  II  we  substitute  a  conceptual  space  with  still  more  general 

geometry,  we  shall  not  need  to  regard  it  as  in  opposition  to  the  present 
discussion.  We  may  learn  more  from  a  different  graphical  picture  of  what  is 

going  on ;  but  we  shall  not  have  to  abandon  anything  which  we  can  perceive 

clearly  in  the  first  picture. 

We  consider  now  the  gauging-equation  *G  =  4\  assumed  by  Weyl.  It  is 
probably  the  one  which  most  naturally  suggests  itself.  Suppose  that  we 

have  adopted  initially  some  other  gauge  in  which  *G  is  not  constant.  *G  is 
a  co-invariant  such  that  when  the  measure  of  interval  is  changed  in  the  ratio 

/a,  *G  changes  in  the  ratio  /u-2.  Hence  we  can  obtain  a  new  gauge  in  which 
*G  becomes  constant  by  transforming  the  measure   of  the  interval  in  the 

ratio  *G~h. 

By  (87 -6)  the  gauging-equation  is  equivalent  to 

G  -  6«:  +  6*a«a  =  4>X       (89-2). 

But  by  (54*72)  the  proper-density  of  matter  is 

po  =  i-(0-4X) 

-£(4 -*.*")   (89-3). 

For  empty  space,  or  for  space  containing  free  electromagnetic  fields  without 

electrons,  p0  =  0,  so  that 

Kaa  =  KaK«      (89-4), 

except  within  an  electron.  This  condition  should  replace  the  equation  «*  =  0 
which  was  formerly  introduced  in  order  to  make  the  electromagnetic  potential 

determinate  (74"1). 
We  cannot  conceive  of  any  kind  of  measurement  with  clocks,  scales, 

moving  particles  or  light-waves  being  made  inside  an  electron,  so  that  any 

gauge  employed  in  such  a  region  must  be  purely  theoretical  having  no  signi- 
ficance in  terms  of  practical  measurement.  For  the  sake  of  continuity  we 

define  the  natural  gauge  in  this  region  by  the  same  equation  *G  =  4X, ;  it  is 

as  suitable  as  any  other.  Inside  the  electron  «;*  will  not  be  equal  to  Ka/ca  and 
the  difference  will  determine  the  mass  of  the  electron  in  accordance  with 

(89'3).  But  it  will  be  understood  that  this  application  of  (89*3)  is  merely 
conventional ;  although  it  appears  to  refer  to  experimental  quantities,  the 

conditions  are  such  that  it  ceases  to  be  possible  for  the  experiments  to  be 
made  by  any  conceivable  device. 

90.    Weyl's  action-principle. 

Weyl  adopts  an  action-density 

A^^~g=(*G'-ah\vF^)^  -o       (901), 
the  constant  a  being  a  pure  number.    He  makes  the  hypothesis  thai  it  obeys 
e.  1  i 
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the  principle  of  stationary  action  for  all  variations  Bg^,  8k m  which  vanish  at 
the  boundary  of  the  region  considered.    Accordingly 

w;r°-  fnr„=°   ^ 
Weyl  himself  states  that  his  action-principle  is  probably  not  realised  in 

nature  exactly  in  this  form.  But  the  procedure  is  instructive  as  showing  the 

kind  of  unifying  principle  which  is  aimed  at  according  to  one  school  of 
thought. 

The  variation  of  *G2  v7  —  g  is 
2*G8{*G  *f^g)  -  *G*S  (V^), 

which  in  the  natural  gauge  becomes  by  (89'1) 

8X8  (*G  v^)  -  16\2 8 (v7^/). 
Hence  by  (87 -6) 

~  8  (A  ̂ ~g)  =  8{(G-GKaa  +  6Ka  K-  -  2\ -  fiF„F")  v7^} 
  (90-3), 

where  j3  =  o/8\. 

The  term  k^^J  —  g  can  be  dropped,  because  by  (51'11) 

This  can  be  integrated,  and  yields  a  surface-integral  over  the  boundary  of  the 
region  considered.    Its  Hamiltonian  derivatives  accordingly  vanish. 

Again 

8{KaKa^  -  g)  =  KaK^8  (g*?  v7  - g)  +  $#  \I  —  g  (/ca8/c^  +  KpS/Ca) 

tea*?  V  -  g  {8g^  +  |#a  V"%^)  +  2g«i  v7  -  g  Kp  8Ka 

=  KaKfi\l  -g  (-  (fagv?  +  |#aV)  Bg„v  +  2«a  V  -  g  8*a 

=  v7  -g{-  k^k"  +  ̂ g^vKaKa)  Bg^  +  2Ka  \/  -g8ica. 

Hence  r— -  (/ca*a)  =  (-  k^k"  +  \g*v  KaKa)    (90-41), 

"g^v 

£-(KaK*)  =  2K*   (90-42). 
I  \Ka 

Hamiltonian  derivatives  of  the  other  terms  in  (90'3)  have  already  been  found 

in  (60-43),  (79-31)  and  (79-32).    Collecting  these  results  we  have 
1     1l  A 

-=-  £=-  =  -  (O"  -  \g»vG)  -  6  (k»kv  -  l(TvKaKa)  -  W  -  WE»V 8X  M</M„ 

=  SirT^  -  2/3E»"  -  6  (k» kv  -  lg>" KaKa)       (90-51) 
1     \\  A 

by  (54-71);  and  ±-  { ̂- =  12«*  +  4/3J>   (90-52). 
8A,  Wk^ 
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If  the  hypothesis  (90*2)  is  correct,  these  must  vanish.  The  vanishing  of 
(9051)  shows  that  the  whole  energy-tensor  consists  of  the  electromagnetic 

energy-tensor  together  with  another  term,  which  must  presumably  be  identi- 

fied with  the  material  energy-tensor  attributable  to  the  binding  forces  of  the 

electrons*.  The  constant  2/3/8ir  correlates  the  natural  gravitational  and 
electromagnetic  units.  The  material  energy-tensor,  being  the  difference  be- 

tween the  whole  tensor  and  the  electromagnetic  part,  is  accordingly 
q 

M**  =  ̂ -  (K^K'-^'KaK")       (9061). 

Hence,  multiplying  by  g^, 

Po  =  M=-^-KaK*        (9062). 

The  vanishing  of  (90'52)  gives  the  remarkable  equation 

/^  =  -J/3J>    (90-71). 

And  since  J£  =  0  (7377),  we  must  have 

<  =  0       (9072), 

agreeing  with  the  original  limitation  of  k^  in  (74*1). 
We  see  that  the  formula  for  p0  (90"62)  agrees  with  that  previously  found 

(89*3)  having  regard  to  the  limitation  /c£  =  0. 
The  result  (9062)  becomes  by  (9071) 

This  shows  that  matter  cannot  be  constituted  without  electric  charge  and 

current.    But  since  the  density  of  matter  is  always  positive,  the  electric  charge- 
and-current  inside  an  electron  must  be  a  space-like  vector,  the  square  of  its 
length  being  negative.    It  would  seem  to  follow  that  the  electron  cannot  be 

built  up  of  elementary  electrostatic  charges  but  resolves  itself  into  something 
more  akin  to  magnetic  charges. 

It  will  be  noticed  that  the  result  (9072)  is  inconsistent  with  the  formula 

Ka/ca  =  icl  which  we  have  found  for  empty  space  (89"4).  The  explanation  is  afforded 
by  (9071)  which  requires  that  a  charge-and-current  vector  must  exist  wherever 

«M  exists,  so  that  no  space  is  really  empty.    On  Weyl's  hypothesis  k\  =  0  is  the 
condition  which  holds  in  all  circumstances;  whilst  the  additional  condition 

«a  =  «a  «a  holding  in  empty  space  reduces  to  the  condition  expressed  by  Ja  =  0. 
It  is  supposed  that  outside  what  is  ordinarily  considered  to  be  the  boundary 

3 
of  the  electron  there  is  a  small  charge  and  current  -,  Ka  extending  as  far  as  the 

electromagnetic  potential  extends. 
For  an  isolated  electron  at  rest  in  Galilean  coordinates  tc4  =  e/r,  so  that 

Ka/ca  =  e"/r-.    On  integrating  throughout  infinite  space  the  result  is  apparently 

*  I  doubt  if  this  is  the  right  interpretation.    See  the  end  of  §  100. 

14—2 
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infinite  ;  but  taking  account  of  the  finite  radius  of  space,  the  result  is  of  order 

e2R.  By  (90-62)  this  represents  the  part  of  the  (negative)  mass  of  the  electron f 
which  is  not  concentrated  within  the  nucleus.  The  actual  mass  was  found  in 

§  80  to  be  of  order  e2Ja  where  a  is  the  radius  of  the  nucleus.  The  two  masses 

e~R  and  e2/a  are  not  immediately  comparable  since  they  are  expressed  in 

different  units,  the  connection  being  made  by  Weyl's  constant  /3  whose  value 
is  left  undecided.  But  since  they  differ  in  dimensions  of  length,  they  would 

presumably  become  comparable  if  the  natural  unit  of  length  were  adopted, 

viz.  the  radius  of  the  world  ;  in  that  case  e2/a  is  at  least  1036  times  e2R,  so  that 
the  portion  of  the  mass  outside  the  nucleus  is  quite  insignificant. 

The  action-principle  here  followed  out  is  obviously  speculative.  Whether 
the  results  are  such  as  to  encourage  belief  in  this  or  some  similar  law,  or  whether 

they  tend  to  dispose  of  it  by  something  like  a  reductio  ad  absurdum,  I  will 
leave  to  the  judgment  of  the  reader.  There  are,  however,  two  points  which 

seem  to  call  for  special  notice — 

(1)  When  we  compare  the  forms  of  the  two  principal  energy-tensors 

it  is  rather  a  mystery  how  the  second  can  be  contained  in  the  first,  since  they 

seem  to  be  anything  but  homologous.  The  connection  is  simplified  by  observing 
that  the  difference  between  them  occurs  in  tlJ./ttyM1,  (9051)  accompanied  only 

by  a  term  which  would  presumably  be  insensible  except  inside  the  electrons. 
But  the  connection  though  reduced  to  simpler  terms  is  not  in  any  way 

explained  by  Weyl's  action-principle.  It  is  obvious  that  his  action  as  it  stands 
has  no  deep  significance ;  it  is  a  mere  stringing  together  of  two  in-invariants 

of  different  forms.  To  subtract  F^F^  from  *G2  is  a  fantastic  procedure  which 

has  no  more  theoretical  justification  than  subtracting  E^  from  T'^.  At  the 
most  we  can  only  regard  the  assumed  form  of  action  A  as  a  step  towards  some 
more  natural  combination  of  electromagnetic  and  gravitational  variables. 

(2)  For  the  first  term  of  the  action,  *G2\/  —g  was  chosen  instead  of  the 

simpler  *G  V  —  g,  because  the  latter  is  not  an  in-invariant-density  and  cannot 
be  regarded  as  a  measure  of  any  absolute  property  of  the  region.  It  is 
interesting  to  trace  how  this  improvement  leads  to  the  appearance  of  the  term 

8  (—  2X,  V  -  g)  in  (90-3),  so  that  the  cosmical  curvature-term  in  the  expression 
for  the  energy-tensor  now  appears  quite  naturally  and  inevitably.  We  may 

contrast  this  with  the  variation  of  G  V  —  g  worked  out  in  §  60,  where  no  such 

term  appears.  In  attributing  more  fundamental  importance  to  the  in-invariant 

*G2^^g  than  to  the  co-invariant  *G\^~g,  Weyl's  theory  makes  an  undoubted 
advance  towards  the  truth. 

t  This  must  not  be  confused  with  mass  of  the  energy  of  the  electromagnetic  field.    The  present 
discussion  relates  to  invariant  mass  to  which  the  field  contributes  nothing. 
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Part  II.   Generalised  Theory 

91.    Parallel  displacement. 

Let  an  infinitesimal  displacement  A*  at  the  point  P  (coordinates,  x^)  be 

carried  by  parallel  displacement  to  a  point  P'  (coordinates,  #M  +  dx^)  infinitely 
near  to  P.  The  most  general  possible  continuous  formula  for  the  change  of  A* 
is  of  the  form 

dA*  =  -T»aA*dxv      (911), 

where  T„a,  which  is  not  assumed  to  be  a  tensor,  represents  64-  arbitrary 
coefficients.  Both  Aa  and  dxv  are  infinitesimals,  so  that  there  is  no  need  to 
insert  any  terms  of  higher  order. 

We  are  going  to  build  the  theory  afresh  starting  from  this  notion  of 

infinitesimal  parallel  displacement ;  and  by  so  doing  we  arrive  at  a  generalisa- 
tion even  wider  than  that  of  Weyl.  Our  fundamental  axiom  is  that  parallel 

displacement  has  some  significance  in  regard  to  the  ultimate  structure  of  the 

world — it  does  not  much  matter  what  significance.  The  idea  is  that  out  of  the 

whole  group  of  displacements  radiating  from  P',  we  can  select  one  A*  +  dA* 
which  has  some  kind  of  equivalence  to  the  displacement  A*  at  P.  We  do  not 
define  the  nature  of  this  equivalence,  except  that  it  shall  have  reference  to  the 

part  played  by  A"-  in  the  relation-structure  which  underlies  the  world  of  physics. 
Notice  that — 

(1)  This  equivalence  is  only  supposed  to  exist  in  the  limit  when  P  and  P' 
are  infinitely  near  together.  For  more  distant  points  equivalence  can  in  general 

only  be  approximate,  and  gradually  becomes  indeterminate  as  the  distance  is 
increased.  It  can  be  made  determinate  by  specifying  a  particular  route  of 

connection,  in  which  case  the  equivalence  is  traced  step  by  step  along  the 
route. 

(2)  The  equivalence  is  not  supposed  to  exist  between  any  world-relations 
other  than  displacements.  Hitherto  we  have  applied  parallel  displacement  to 

any  tensor,  but  in  this  theory  we  only  use  it  for  displacements. 
(3)  It  is  not  assumed  that  there  is  any  complete  observational  test  of 

equivalence.  This  is  rather  a  difficult  point  which  will  be  better  appreciated 
later.  The  idea  is  that  the  scheme  of  equivalence  need  not  be  determinate 

observationally,  and  may  have  permissible  transformations  ;  just  as  the  scheme 

of  coordinate-reckoning  is  not  determinate  observationally  and  is  subject  to 
transformations. 

Let  PPj  represent  the  displacement  A^  —  hx^  which  on  parallel  displace- 

ment to  P'  becomes  P'Pi';  then  by  (91*1)  the  difference  of  coordinates  of  Px' 
and  Pj  is 

A*  +  dA*  =  8a?M  -  T^a8xadxv, 

so  that  the  coordinates  of  P/  relative  to  P  are 

dxp  +  &rM  -  T?a8xadxv   (91  2). 
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Interchanging  the  two  displacements,  i.e.  displacing  PP'  along  PPly  we  shall 

not  arrive  at  the  same  point  Px'  unless 
rjL-rs,    (91-3). 

When  (9T3)  is  satisfied  we  have  the  parallelogram  law,  that  if  a  displacement 
AB  is  equivalent  to  CD,  then  AG  is  equivalent  to  BD. 

This  is  the  necessary  condition  for  what  is  called  affine  geometry.  It  is 

adopted  by  Weyl  and  other  writers ;  but  J.  A.  Schouten  in  a  purely  geometrical 

investigation  has  dispensed  with  it.    I  shall  adopt  it  here. 

All  questions  of  the  fundamental  axioms  of  a  science  are  difficult.  In 

general  we  have  to  start  somewhat  above  the  fundamental  plane  and  develop 
the  theory  backwards  towards  fundamentals  as  well  as  forwards  to  results.  I 

shall  defer  until  §  98  the  examination  of  how  far  the  axiom  of  parallel  dis- 
placement and  the  condition  of  affine  geometry  are  essential  in  translating  the 

properties  of  a  relation-structure  into  mathematical  expression ;  and  I  proceed 
at  once  to  develop  the  consequences  of  the  specification  here  introduced. 

By  the  symmetry  condition  the  number  of  independent  V^a  is  reduced  to 

40,  variable  from  point  to  point  of  space.  They  are  descriptive  of  the  relation- 
structure  of  the  world,  and  should  contain  all  that  is  relevant  to  physics.  Our 

immediate  problem  is  to  show  how  the  more  familiar  variables  of  physics  can 
be  extracted  from  this  crude  material. 

92.    Displacement  round  an  infinitesimal  circuit. 

Let  a  displacement  A*  be  carried  by  parallel  displacement  round  a  small 
circuit  G    The  condition  for  parallel  displacement  is  by  (9T1) 

dA* 
&;=-r'^   c*1* 

Hence  the  difference  of  the  initial  and  final  values  is 

8A*  =       -7T-  dxv 

J  c  oxv 

=  -  I    I  £  Aadxv 
Jc 

=lSJ{i.^A'>-l^A'>}dS' 
by  Stokes's  theorem  (32-3). 

The  integrand  is  equal  to 

=  A<(J^T^-~Y^-T?ari,A'+Y:aT:iA'     by  (92-1) 
-  _  *  R**     A  e 

where  *B?v<r  =  - .—  T*  +  =|  r^  +  r^Kf-T^aTte     (92-2). 
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Hence  8A»  =  - -j  ̂B^A'dS"    (9231). 

As  in  §  33  the  formula  applies  only  to  infinitesimal  circuits.  In  evaluating 

the  integrand  we  assumed  that  Aa  satisfies  the  condition  of  parallel  displace- 
ment (92-1)  not  only  on  the  boundary  but  at  all  points  within  the  circuit.  No 

single  value  of  Aa  can  satisfy  this,  since  if  it  holds  for  one  circuit  of  displace- 
ment it  will  not  hold  for  a  second.  But  the  discrepancies  are  of  order  pro- 

portional to  dSv,r, and  another  factor  dS"* occurs  in  the  integration ;  hence(92'3] ) 
is  true  when  the  square  of  the  area  of  the  circuit  can  be  neglected. 

Writing  £*•"=  \\dS-  for  a  small  circuit,  (92-31)  approaches  the  limit 

BA»  =  -.lmB*„A*%-    (92-32), 

which  shows  that  *B*va  is  a  tensor f.  Moreover  it  is  an  in-tensor,  since  we  have 
not  yet  introduced  any  gauge.  In  fact  all  quantities  introduced  at  present 

must  have  the  "  in-  "  property,  for  we  have  not  begun  to  discuss  the  conception 
of  length. 

We  can  form  an  in-tensor  of  the  second  rank  by  contraction.  With  the 
more  familiar  arrangement  of  suffixes, 

7)  7) 

■B  ixvtr  =~~  j\  I   |//1     '     ji~  *   ap.  "*~  *■   ap.  *■   vol  *■    i'H  *•    aa        \U ̂   4  1  ), 

3  „.     . 

•^— g^r^  +  ̂ r^  +  r^rt-r^rj.    (92-42). 
Another  contracted  in-tensor  is  obtained  by  setting  e  =  yu,,  viz. 

-2F  =-     ra  +  —  r°  (qvi'A) -11-  va  3  L   va    I     *\        L   aa      \a -4  *«*/« 
" a  i'«.|» 

We  shall  write  r,  =  r*a       (925). 

Then  2F„  =  dr"-d~'r      (92-55). 

It  will  be  seen  from  (9242)  thatj 

*n         *n     _oi ,,.      oi  v 
ffw-.ff.-^-^-W.   (92-6), 

so  that  Fp,  is  the  antisymmetrical  part  of  *Gllv.  Thus  the  second  mode  of 

contraction  of  *B^V<T  does  not  add  anything  not  obtainable  by  the  first  modi'. 
and  we  need  not  give  F^v  separate  consideration. 

According  to  this  mode  of  development  the  in-tensors  *Bellt(T  and  *(?„,,  arc 
the  most  fundamental  measures  of  the  intrinsic  structure  of  the  world.    They 

t  Another  independent  proof  that  *7jm,  is  a  tensor  is  obtained  in  equation  (94-l) ;  so  thai  if 
the  reader  is  uneasy  about  the  rigour  of  the  preceding  analysis,  he  may  regard  it  as  merely 

suggesting  consideration  of  the  expression  (92-2)  ami  use  the  alternative  proof  that  it  is  a  tensor. 

X  Here  for  the  first  time  we  make  use  of  the  symmetrical  property  of  r"  ,.  If  r^.+  I'*  the 
analysis  at  this  point  becomes  highly  complicated. 
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take  precedence  of  the  ryM„,  which  are  only  found  at  a  later  stage  in  our  theory. 
Notice  that  we  are  not  yet  in  a  position  to  raise  or  lower  a  suffix,  or  to  define 

an  invariant  such  as  *G,  because  we  have  no  g^.  If  we  wish  at  this  stage  to 

form  an  invariant  of  a  four-dimensional  region  we  must  take  its  "  generalised 

volume  " 

jjjfwn*^\}dT, which  is  accordingly  more  elementary  than  the  other  regional  invariants 

enumerated  in  §  88. 

It  may  be  asked  whether  there  is  any  other  way  of  obtaining  tensors, 
besides  the  consideration  of  parallel  displacement  round  a  closed  circuit.  I 
think  not ;  because  unless  our  succession  of  displacements  takes  us  back  to  the 

starting-point,  we  are  left  with  initial  and  final  displacements  at  a  distance, 
between  which  no  comparability  exists. 

The  equation  (92*55)  does  not  prove  immediately  that  F^v  is  the  curl  of  a 
vector,  because,  notwithstanding  the  notation,  TM  is  not  usually  a  vector.    But 
since  F^v  is  a  tensor 

2F'ap  =  IF, 

iv  dxa'  doc/ 

_3rM  dx„  dx^      3r„  dxp.  dxv 

dxv  dxp  dxa'      dx^  dxa'  dxp 

dxp   \    *dxa'J      dxa   \    "dxp'J' 
Now  by  (23*12)  V^dx^/dxa'  is  a  vector.    Let  us  denote  it  by  2/ca'.    Then 

„,     _  9/Y      dfc/ 

dxp       dxa' ' Thus  F'afs  is  actually  the  curl  of  a  vector  /ca',  though  that  vector  is  not  neces- 
sarily equal  to  IY  in  all  systems  of  coordinates.    The  general  solution  of 

i/aiY    aiy^    dKj    d^ 

is 
2  \dxft'       dxa' 

dxp 

an 

dxa' 

•(92*7), 

and  since  fi  need  not  be  an  invariant,  IY  is  not  a  vector. 

93.    Introduction  of  a  metric. 

Up  to  this  point  the  interval  ds  between  two  points  has  not  appeared  in 

our  theory.  It  will  be  remembered  that  the  interval  is  the  length  of  the  cor- 
responding displacement,  and  we  have  to  consider  how  a  length  (an  invariant) 

is  to  be  assigned  to  a  displacement  dx^  (a  contravariant  in-vector).  In  this 
section  we  shall  assign  it  by  the  convention 

ds2  =  gH.vdx^dxv       (93*11). 
Here  g^„  must  be  a  tensor,  in  order  that  the  interval  may  be  an  invariant ; 
but  the  tensor  is  chosen  by  us  arbitrarily. 

1 
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The  adoption  of  a  particular  tensor  g^v  is  equivalent  to  assigning  a  particular 

gauge-system — a  system  by  which  a  unique  measure  is  assigned  to  the  interval 

between  every  two  points.  In  Weyl's  theory,  a  gauge-system  is  partly  physical 
and  partly  conventional ;  lengths  in  different  directions  but  at  the  same  point 

are  supposed  to  be  compared  by  experimental  (optical)  methods  ;  but  lengths 

at  different  points  are  not  supposed  to  be  comparable  by  physical  methods 

(transfer  of  clocks  and  rods)  and  the  unit  of  length  at  each  point  is  laid  down 

by  a  convention.  I  think  that  this  hybrid  definition  of  length  is  undesirable, 

and  that  length  should  be  treated  as  a  purely  conventional  or  else  a  purely 

physical  conception.  In  the  present  section  we  treat  it  as  a  purely  con- 
ventional invariant  whose  properties  we  wish  to  discuss,  so  that  length  as  here 

denned  is  not  anything  which  has  to  be  consistent  with  ordinary  physical  tests. 
Later  on  we  shall  consider  how  g^  must  be  chosen  in  order  that  conventional 

length  may  obey  the  recognised  physical  tests  and  thereby  become  physical 
length ;  but  at  present  the  tensor  g^v  is  unrestricted. 

Without  any  loss  of  generality,  we  may  take  g^  to  be  a  symmetrical  tensor, 

since  any  antisymmetrical  part  would  drop  out  on  multiplication  by  dx^dxv 
and  would  be  meaningless  in  (931 1). 

Let  I  be  the  length  of  a  displacement  A*,  so  that 

l*-g„A*A*   (93-12). 

Move  A*  by  parallel  displacement  through  dxa,  then 

=  (|-P#i'-^^rUa-fc^r^la)  dx9    by  (9M) 

=  (%s  -  gavT^-g^T%}j  A*A*dx0 
by  interchanging  dummy  suffixes. 

In  conformity  with  the  usual  rule  for  lowering  suffixes,  we  write 

r     =a  ra 

so  that  d(l*)  =  ̂-r^r-rw)  A*A>  (dx)°   (93-2). 

But  d(l2),the  difference  of  two  invariants,  is  an  invariant.  Hence  the 

quantity  in  the  bracket  is  a  covariant  tensor  of  the  third  rank  which  is  evi- 
dently symmetrical  in  /x  and  v.    We  denote  it  by  2KM„,„.    Thus 

2K^a  =  ?pv-ra^-raVtll      (93-3). a 

Similarly  2KM<r>„=   '  *a  —  r„Mi a  —  Tva<ll, 

or-  _  ffiw        p  _  p 
^^va,  y.  -     o  ~  L  yv,  o         l  ya,v 
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Adding  these  and  subtracting  (93-3)  we  have 

IW  +  K^  -  K«. - ^  (j£  +  ̂T  ~  j^J  ~  r^°     •••(93-4). 

Let  <$>i/,<r  =  KM„i<7  —  Kfj,.a,v  ~  l^-va ,n        (Jo'5). 

Then  (93'4)  becomes  r^c  =  [fxv,  <r\  +  S,,v>a, 

so  that,  raising  the  suffix,        r£v  =  {/xv,  <r)  +  S°v      (93'6). 
If  KM„j0.  has  the  particular  form  g^tc^, 

so  that  (93-6)  reduces  to  (86-2)  with  T°u  =  *{ij,v,  a}. 
Thus  Weyl's  geometry  is  a  particular  case  of  our  general  geometry  of 

parallel  displacement.  His  restriction  KM„)<7  =  gM  k„  is  equivalent  to  that  already 
explained  in  .§  84. 

94.    Evaluation  of  the  fundamental  in-tensors. 

In  (92'41)  *BlLva.  is  expressed  in  terms  of  the  non-tensor  quantities  F*„. 
By  means  of  (93-6)  it  can  now  be  expressed  in  terms  of  tensors  g^  and  $£,,. 
Making  the  substitution  the  result  is 

*B£W  =  ~dx   W>  <?}  +  fa  W>  e}  +  {n<r,  «}  [va,  e}  -  [fiv,  a}  [aa,  e] 

-  ~  S'„  +  j£-  8^  +  S%  {va,  ej  +  8*m  {fia,  a}  -  8%  {aa,  e}  -  S'„a  [pv,  a) 
,     Cfa     ne       _   na     ere 

The  first  four  terms  give  the  ordinary  Riemann-Christoffel  tensor  (34'4).   The 
next  six  terms  reduce  to 

where  the  final  suffix  represents  ordinary  covariant  differentiation  (not  in- 

covariant  differentiation),  viz.  by  (30*4), 

(£<„)„  =  fa-  S%  -  {/xa,  a]  SI  -  [va,  a]  8^  +  [a*,  e]  8%. 

Hence         *B^  =  B^  -  (8\,\  +  (S^\  +  8%8eva  -  S%8'„     (94-1). 

This  form  makes  its  tensor-property  obvious,  whereas  the  form  (92'41)  made 

its  "  in-  "  property  obvious. 
We  next  contract  by  setting  e  =  a  and  write 

£Va=2*M     (94-2), 

obtaining  *<?„,,  =  G^  - (8%\  +  Zfc^  +  S^St  -  2«aS%    (94-3). 

Again,  multiplying  by  g*", 

*G  =  G  +  2K  +  2>c'ta  +  4"CaXl  +  S;liSl>fi    ....(94-4), 

where  we  have  set  81^  —  —  2XM       (94"5). 

The  difference  between  (94'5)  and  (94'2)  is  that  XM  is  formed  by  equating 
the  two  symmetrical  suffixes,  and  /cM  by  equating  one  of  the  symmetrical 
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suffixes  with  the  third  suffix  in  the  $-tensor.    km  and  XM  are,  of  course,  entirely 
different  vectors. 

The  only  term  on  the  right  of  (94*3)  which  is  not  symmetrical  in  fx  and  v 
is  2kh,v.    We  write 

R„-0rH*r  +  *m)-(S%\-2Km8i  +  8b8i.   (94-61), 

Ffl¥  =  Kflv-K,.ll    (94-62), 

so  that  *G^  =  R^V  +  FILV     (94-63), 
and  R^  and  F^v  are  respectively  its  symmetrical  and  antisymmetrical  parts. 

Evidently  R^  and  Fliv  will  both  be  in-tensors. 

We  can  also  set  *BILV^  =  R^,^  +  F^^, 
where  R  is  antisymmetrical  and  F  is  symmetrical  in  /a  and  e.    We  find  that 

"nidi  \^>ie,  v'a         x^tie,  ir/n 

a  result  which  is  of  interest  in  connection  with  the  discussion  of  §  84.    But 

Revere  and  F^e  are  not  in-tensors,  since  the  g^„  are  needed  to  lower  the  suffix  e. 

By  (92-5)  and  (936) 
rM  =  r;a  =  \^,  aj  +  s;a 

=  J" (log  v"^}  +  2^     (94'7)- 
By  comparison  with   (92*7)  we   see   that  the   indeterminate   function   O   is 

log  V  —  g,  which  is  not  an  invariant. 

95.    The  natural  gauge  of  the  world. 

We  now  introduce  the  natural  gauge  of  the  world.  The  tensor  g^v,  which 

has  hitherto  been  arbitrary,  must  be  chosen  so  that  the  lengths  of  displace- 
ments agree  with  the  lengths  determined  by  measurements  made  with  material 

and  optical  appliances.  Any  apparatus  used  to  measure  the  world  is  itself  part 

of  the  world,  so  that  the  natural  gauge  represents  the  world  as  self-gauging. 
This  can  only  mean  that  the  tensor  g^  which  defines  the  natural  gauge  is 

not  extraneous,  but  is  a  tensor  already  contained  in  the  world-geometry.  Only 
one  such  tensor  of  the  second  rank  has  been  found,  viz.  *G>„.  Hence  natural 
length  is  given  by 

The  antisymmetrical  part  drops  out,  giving 

l-  =  R^A^A". 

Accordingly  by  (93"12)  we  must  take 

^V  =  R^    (951), 

introducing  a  universal  constant  A,  in  order  to  remain  free  to  use  the  centi- 

metre instead  of  the  natural  unit  of  length  whose  ratio  to  familiar  standards 
is  unknown. 

The  manner  in  which  the  tensor  R^  is  transferred  via  material  structure 

to  the  measurements  made  with  material  structure,  has  been  discussed  in 
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§  66.  We  have  to  replace  the  tensor  G^  used  in  that  section  by  its  more 

general  form  R^,  since  CrM„  is  not  an  in-tensor  and  has  no  definite  value 

until  after  the  gauging-equation  (95,1)  has  been  laid  down.  The  gist  of  the 
argument  is  as  follows — 

First  adopt  any  arbitrary  conventional  gauge  which  has  no  relation  to 

physical  measures.  Let  the  displacement  A^  represent  the  radius  in  a  given 
direction  of  some  specified  unit  of  material  structure — e.g.  an  average  electron, 

an  average  oxygen  atom,  a  drop  of  water  containing  1020  molecules  at  tempera- 
ture of  maximum  density.  J.M  is  determined  by  laws  which  are  in  the  main 

unknown  to  us.  But  just  as  we  can  often  determine  the  results  of  unknown 

physical  laws  by  the  method  of  dimensions,  after  surveying  the  physical 
constants  which  can  enter  into  the  results,  so  we  can  determine  the  condition 

satisfied  by  A^  by  surveying  the  world-tensors  at  our  disposal.  This  method 
indicates  that  the  condition  is 

RhVA^Av  =  constant      (9511). 

If  now  we  begin  to  make  measures  of  the  world,  using  the  radius  of  such  a 

material  structure  as  unit,  we  are  thereby  adopting  a  gauge-system  in  which 
the  length  I  of  the  radius  is  unity,  i.e. 

l  =  P  =  g„vA>LA*     (9512). 

By  comparing  (95-U)  and  (9512)  it  follows  that  g^v  must  be  a  constant 
multiple  of  R^v;  accordingly  we  obtain  (951)*. 

Besides  making  comparisons  with  material  units,  we  can  also  compare  the 

lengths  of  displacements  by  optical  devices.  We  must  show  that  these  com- 

parisons will  also  fit  into  the  gauge-system  (951).  The  light-pulse  diverging 

from  a  point  of  space-time  occupies  a  unique  conical  locus.  This  locus  exists 
independently  of  gauge  and  coordinate  systems,  and  there  must  therefore  be 

an  in-tensor  equation  defining  it.  The  only  in-tensor  equation  giving  a  cone 
of  the  second  degree  is 

RliVdxlidxv  =  0   (95-2 1 ). 

Comparing  this  with  Einstein's  formula  for  the  light-cone 

ds2  =  g^dx^dxy  =  0   (95*22). 

We  see  that  again  RliV  =  XgtiV       (95*23). 
Note  however  that  the  optical  comparison  is  less  stringent  than  the 

material  comparison;  because  (95*21)  and  (95*22)  would  be  consistent  if  A, 
were  a  function  of  position,  whereas  the  material  comparisons  require  that  it 

shall  be  a  universal  constant.  That  is  why  Weyl's  theory  of  gauge -transforma- 
tion occupies  a  position  intermediate  between  pure  mathematics  and  physics. 

He  admits  the  physical  comparison  of  length  by  optical  methods,  so  that  his 

gauge-transformations  are  limited  to  those  which  do  not  infringe  (95*23) ;  but 

*  Note  that  the  isotropy  of  the  material  unit  or  of  the  electron  is  not  necessarily  a  symmetry 
of  form  but  an  independence  of  orientation.  Thus  a  metre-rule  has  the  required  isotropy  because 

it  has  (conventionally)  the  same  length  however  it  is  orientated. 
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he  does  not  recognise  physical  comparison  of  length  by  material  transfer,  and 
consequently  he  takes  A.  to  be  a  function  fixed  by  arbitrary  convention  and 
not  necessarily  a  constant.  There  is  thus  both  a  physical  and  a  conventional 

element  in  his  "  length." 
A  hybrid  gauge,  even  if  illogical,  may  be  useful  in  some  problems,  par- 

ticularly if  we  are  describing  the  electromagnetic  field  without  reference  to 

matter,  or  preparatory  to  the  introduction  of  matter.  Even  without  matter 

the  electromagnetic  field  is  self-gauging  to  the  extent  of  (95-23),  \  beino-  a 
function  of  position ;  so  that  we  can  gauge  our  tensors  to  this  extent  without 

tackling  the  problem  of  matter.  Many  of  Weyl's  in-tensors  and  in-invariants 
are  not  invariant  for  the  unlimited  gauge-transformations  of  the  generalised 
theory,  but  they  become  determinate  if  optical  gauging  alone  is  employed ; 
whereas  the  ordinary  invariant  or  tensor  is  only  determinate  in  virtue  of 

relations  to  material  standards.  In  particular  ty"  is  not  a  complete  in-tensor- 
density,  but  it  has  a  self-contained  absolute  meaning,  because  it  measures  the 
electromagnetic  field  and  at  the  same  time  electromagnetic  fields  (light- waves) 

suffice  to  gauge  it.  It  may  be  contrasted  with  F*v  which  can  only  be  gauged 
by  material  standards ;  FILV  has  an  absolute  meaning,  but  the  meaning  is  not 

self-contained.  For  this  reason  problems  will  arise  for  which  Weyl's  more 
limited  gauge-transformations  are  specially  appropriate ;  and  we  regard  the 
generalised  theory  as  supplementing  without  superseding  his  theory. 

Adopting  the  natural  gauge  of  the  world,  we  describe  its  condition  by 

two  tensors  g^v  and  K£„.  If  the  latter  vanishes  we  recognise  nothing  but  g^, 

i.e.  pure  metric.  Now  metric  is  the  one  characteristic  of  space.  I  refer,  of 

course,  to  the  conception  of  space  in  physics  and  in  everyday  life — the  mathe- 

matician can  attribute  to  his  space  whatever  properties  he  wishes.  If  K£„  does 

not  vanish,  then  there  is  something  else  present  not  recognised  as  a  property 

of  pure  space ;  it  must  therefore  be  attributed  to  a  "thing*."  Thus  if  there 

is  no  "  thing  "  present,  i.e.  if  space  is  quite  empty,  K£„  =  0,  and  by  (94"G1)  R^ 
reduces  to  G^.    In  empty  space  the  gauging-equation  becomes  accordingly 

GM„  =  X$W     (95-3), 

which  is  the  law  of  gravitation  (37*4).  The  gauging-equation  is  an  alias  of  the 
law  of  gravitation. 

We  see  by  (66"2)  that  the  natural  unit  of  length  (\=  1)  is  1/V3  times  the 
radius  of  curvature  of  the  world  in  any  direction  in  empty  space.  We  do  not 

know  its  value,  but  it  must  obviously  be  very  large. 
One  reservation  must  be  made  with  regard  to  the  definition  of  empty 

space  by  the  condition  K£„  =  0.  It  is  possible  that  we  do  not  recognise  K£„  by 

any  physical  experiment,  but  only  certain  combinations  of  its  components.  In 

that  case  definite  values  of  K£„  would  not  be  recognised  as  constituting  a 

*  An  electromagnetic  field  is  a  "thing";  a  gravitational  field  is  not,  Einstein's  theory  having 
shown  that  it  is  nothing  more  than  the  manifestation  of  the  metric. 
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"  thing,"  if  the  recognisable  combinations  of  its  components  vanished  ;  just  as 
finite  values  of  /cM  do  not  constitute  an  electromagnetic  field,  if  the  curl 

vanishes.  This  does  not  affect  the  validity  of  (95*3),  because  any  breach  of 
this  equation  is  capable  of  being  recognised  by  physical  experiment,  and 

therefore  would  be  brought  about  by  a  combination  of  components  of  K£„  which 

had  a  physical  significance. 

96.    The  principle  of  identification. 

In  §§  91-93  we  have  developed  a  pure  geometry,  which  is  intended  to  be  de- 

scriptive of  the  relation-structure  of  the  world.  The  relation-structure  presents 
itself  in  our  experience  as  a  physical  world  consisting  of  space,  time  and  things. 
The  transition  from  the  geometrical  description  to  the  physical  description 

can  only  be  made  by  identifying  the  tensors  which  measure  physical  quanti- 
ties with  tensors  occurring  in  the  pure  geometry ;  and  we  must  proceed  by 

inquiring  first  what  experimental  properties  the  physical  tensor  possesses, 
and  then  seeking  a  geometrical  tensor  which  possesses  these  properties  by 

virtue  of  'mathematical  identities. 
If  we  can  do  this  completely,  we  shall  have  constructed  out  of  the  primitive 

relation-structure  a  world  of  entities  which  behave  in  the  same  way  and  obey 
the  same  laws  as  the  quantities  recognised  in  physical  experiments.  Physical 

theory  can  scarcely  go  further  than  this.  How  the  mind  has  cognisance  of 

these  quantities,  and  how  it  has  woven  them  into  its  vivid  picture  of  a  per- 
ceptual world,  is  a  problem  of  psychology  rather  than  of  physics. 

The  first  step  in  our  transition  from  mathematics  to  physics  is  the  identi- 
fication of  the  geometrical  tensor  R^  with  the  physical  tensor  g^  giving  the 

metric  of  physical  space  and  time.  Since  the  metric  is  the  only  property  of 

space  and  time  recognised  in  physics,  we  may  be  said  to  have  identified  space 

and  time  in  terms  of  relation-structure.  We  have  next  to  identify  "  things," 

and  the  physical  description  of  "  things  "  falls  under  three  heads. 

(1)  The  energy-tensor  T^  comprises  the  energy  momentum  and  stress  in 

unit  volume.  This  has  the  property  of  conservation  (T^)v  =  0,  which  enables 
us  to  make  the  identification 

-8irT;=G;-y;(G-2\)    (oei), 

satisfying  the  condition  of  conservation  identically.  Here  A.  might  be  any 

constant ;  but  if  we  add  the  usual  convention  that  the  zero-condition  from 

which  energy,  momentum  and  stress  are  to  be  reckoned  is  that  of  empty  space 

(not  containing  electromagnetic  fields),  we  obtain  the  condition  for  empty 

space  by  equating  (96"1)  to  zero,  viz. 

so  that  X.  must  be  the  same  constant  as  in  (95*3). 



95-97  THE  PRINCIPLE  OF  IDENTIFICATION  223 

(2)  The  electromagnetic  force-tensor  Fuv  has  the  property  that  it  fulfils 

the  first  half  of  Maxwell's  equations 
dFu.v     dFva     dF„u     ,. 

dxa        dx^        dxv  x        ' 

This  will  be  an  identity  if  Fuv  is  the  curl  of  any  covariant  vector;  we 

accordingly  identify  it  with  the  in-tensor  already  called  Fuv  in  anticipation, 

which  we  have  seen  is  the  curl  of  a  vector  k^  (94-62). 
(3)  The  electric  charge-and-current  vector  J*  has  the  property  of  con- 

servation of  electric  charge,  viz. J"£  =  0. 

The  divergence  of  J*  will  vanish  identically  if  J*1  is  itself  the  divergence  of  any 
an  ti  symmetrical  contra  variant  tensor.  Accordingly  we  make  the  identification 

J»  =  Fr      (96-3), 

a  formula  which  satisfies  the  remaining  half  of  Maxwell's  equations. 
The  correctness  of  these  identifications  should  be  checked  by  examining 

whether  the  physical  tensors  thus  defined  have  all  the  properties  which 

experiment  requires  us  to  attribute  to  them.  There  is,  however,  only  one 

further  general  physical  law,  which  is  not  implicit  in  these  definitions,  viz.  the 
law  of  mechanical  force  of  an  electromagnetic  field.  We  can  only  show  in  an 

imperfect  way  that  our  tensors  will  conform  to  this  law,  because  a  complete 

proof  would  require  more  knowledge  as  to  the  structure  of  an  electron ;  but 

the  discussion  of  §  80  shows  that  the  law  follows  in  a  very  plausible  way. 

In  identifying  "  things "  we  have  not  limited  ourselves  to  in-tensors, 

because  the  "  things  "  discussed  in  physics  are  in  physical  space  and  time  and 
therefore  presuppose  the  natural  gauge-system.  The  laws  of  conservation  and 

Maxwell's  equations,  which  we  have  used  for  identifying  "  things,"  would  not 
hold  true  in  an  arbitrary  gauge-system. 

No  doubt  alternative  identifications  would  be  conceivable.  For  example, 

Fuv  might  be  identified  with  the  curl  of  X/f  instead  of  the  curl  of  tcu.  That 

would  leave  the  fundamental  in-tensor  apparently  doing  nothing  to  justify  its 
existence.  We  have  chosen  the  most  obvious  identifications,  and  it  seems 

reasonable  to  adhere  to  them,  unless  a  crucial  test  can  be  devised  which  shows 

them  to  be  untenable.  Tn  any  case,  with  the  material  at  our  disposal  the 

number  of  possible  identifications  is  very  limited. 

97.    The  bifurcation  of  geometry  and  electrodynamics. 

The  fundamental  in-tensor  *GUV  breaks  up  into  a  symmetrical  part  Huv 

and  an  antisymmetrical  part  Fuv.  The  former  is  \gav,  or  if  the  natural  unit 

of  length  (\=  1)  is  used,  it  is  simply  </uv.    We  have  then *n    —  a     +  v 

t  The  curl  of  X^  is  not  an  in-tensor,  but  there  is  no  obvious  reason  why  as  in-tensor  should 
be  required.   If  magnetic  flux  were  measured  in  practice  by  comparison  with  that  of  a  magneton 

transferred  from  point  to  point,  as  a  length  is  measured  by  transfer  of  a  Male,  then  an  in-i 
would  be  needed.    But  that  is  not  the  actual  procedure. 
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showing  at  once  how  the  field  or  aether  contains  two  characteristics,  the 
gravitational  potential  (or  the  metric)  and  the  electromagnetic  force.  These 
are  connected  in  the  most  simple  possible  way  in  the  tensor  descriptive  of 

underlying  relation-structure ;  and  we  see  in  a  general  way  the  reason  for  this 

inevitable  bifurcation  into  symmetrical  and  antisymmetrical — geometrical- 

mechanical  and  electromagnetic — characteristics. 
Einstein  approaches  these  two  tensors  from  the  physical  side,  having 

recognised  their  existence  in  observational  phenomena.  We  here  approach 
them  from  the  deductive  side  endeavouring  to  show  as  completely  as  possible 

that  they  must  exist  for  almost  any  kind  of  underlying  structure.  We  confirm 

his  assumption  that  the  interval  ds'2  is  an  absolute  quantity,  for  it  is  our  in- 
invariant  Rnydx^dx,,',  we  further  confirm  the  well-known  property  of  F^  that 
it  is  the  curl  of  a  vector. 

We  not  only  justify  the  assumption  that  natural  geometry  is  Riemannian 

geometry  and  not  the  ultra-Riemannian  geometry  of  Weyl,  but  we  can  show 
a  reason  why  the  quadratic  formula  for  the  interval  is  necessary.  The  only 

simple  absolute  quantity  relating  to  two  points  is 

To  obtain  another  in-invariant  we  should  have  to  proceed  to  an  expression  like 

Although  the  latter  quartic  expression  does  theoretically  express  some  abso- 
lute property  associated  with  the  two  points,  it  can  scarcely  be  expected  that 

we  shall  come  across  it  in  physical  exploration  of  the  world  so  immediately  as 

the  former  quadratic  expression. 

It  is  the  new  insight  gained  on  these  points  which  is  the  chief  advantage 

of  the  generalised  theory. 

98.    General  relation-structure. 

We  proceed  to  examine  more  minutely  the  conceptions  on  which  the 
fundamental  axioms  of  parallel  displacement  and  affine  geometry  depend. 

The  fundamental  basis  of  all  things  must  presumably  have  structure  and 

substance.  We  cannot  describe  substance;  we  can  only  give  a  name  to  it. 

Any  attempt  to  do  more  than  give  a  name  leads  at  once  to  an  attribution  of 
structure.  But  structure  can  be  described  to  some  extent ;  and  when  reduced 

to  ultimate  terms  it  appears  to  resolve  itself  into  a  complex  of  relations.  And 

further  these  relations  cannot  be  entirely  devoid  of  comparability ;  for  if 

nothing  in  the  world  is  comparable  with  anything  else,  all  parts  of  it  are  alike 
in  their  unlikeness,  and  there  cannot  be  even  the  rudiments  of  a  structure. 

The  axiom  of  parallel  displacement  is  the  expression  of  this  comparability, 

and  the  comparability  postulated  seems  to  be  almost  the  minimum  conceiv- 

able. Only  relations  which  are  close  together,  i.e.  interlocked  in  the  relation- 
structure,  are  supposed  to  be  comparable,  and  the  conception  of  equivalence 

is  applied  only  to  one  type  of  relation.    This  comparable  relation  is  called 
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displacement.  By  representing  this  relation  graphically  we  obtain  the  idea  of 

location  in  space ;  the  reason  why  it  is  natural  for  us  to  represent  this  par- 
ticular relation  graphically  does  not  fall  within  the  scope  of  physics. 

Thus  our  axiom  of  parallel  displacement  is  the  geometrical  garb  of  a 

principle  which  may  be  called  "  the  comparability  of  proximate  relations." 
There  is  a  certain  hiatus  in  the  arguments  of  the  relativity  theory  which 

has  never  been  thoroughly  explored.  We  refer  all  phenomena  to  a  system  of 

coordinates ;  but  do  not  explain  how  a  system  of  coordinates  (a  method  of 

numbering  events  for  identification)  is  to  be  found  in  the  first  instance.  It 

may  be  asked,  What  does  it  matter  how  it  is  found,  since  the  coordinate- 
system  fortunately  is  entirely  arbitrary  in  the  relativity  theory?  But  the 

arbitrariness  of  the  coordinate-system  is  limited.  We  may  apply  any  con- 
tinuous transformation  ;  but  our  theory  does  not  contemplate  a  discontinuous 

transformation  of  coordinates,  such  as  would  correspond  to  a  re-shuffling  of 
the  points  of  the  continuum.  There  is  something  corresponding  to  an  order  of 

enumeration  of  the  points  which  we  desire  to  preserve,  when  we  limit  the 

changes  of  coordinates  to  continuous  transformations. 
It  seems  clear  that  this  order  which  we  feel  it  necessary  to  preserve  must 

be  a  structural  order  of  the  points,  i.e.  an  order  determined  by  their  mutual 

relations  in  the  world-structure.  Otherwise  the  tensors  which  represent 
structural  features,  and  have  therefore  a  possible  physical  significance,  will 

become  discontinuous  with  respect  to  the  coordinate  description  of  the  world. 

So  far  as  I  know  the  only  attempt  to  derive  a  coordinate  order  from  a  postu- 

lated structural  relation  is  that  of  Robb*  ;  this  appears  to  be  successful  in  the 

case  of  the  "special"  theory  of  relativity,  but  the  investigation  is  very 
laborious.  In  the  general  theory  it  is  difficult  to  discern  any  method  of 

attacking  the  problem.  It  is  by  no  means  obvious  that  the  interlocking  of 
relations  would  necessarily  be  such  as  to  determine  an  order  reducible  to  the 

kind  of  order  presumed  in  coordinate  enumeration.  I  can  throw  no  light  on 

this  question.  It  is  necessary  to  admit  that  there  is  something  of  a  jump 

from  the  recognition  of  a  comparable  relation  called  displacement  to  the 

assumption  that  the  ordering  of  points  by  this  relation  is  homologous  with 

the  ordering  postulated  when  the  displacement  is  represented  graphically  by 
a  coordinate  difference  dx^. 

The  hiatus  probably  indicates  something  more  than  a  temporary  weakness 

of  the  rigorous  deduction.  It  means  that  space  and  time  are  only  approximate 

conceptions,  which  must  ultimately  give  way  to  a  more  general  conception  of 

the  ordering  of  events  in  nature  not  expressible  in  terms  of  a  fourfold  coordi- 
nate-system. It  is  in  this  direction  that  some  physicists  hope  to  find  a  solution 

of  the  contradictions  of  the  quantum  theory.  It  is  a  fallacy  to  think  thai  the 

conception  of  location  in  space-time  based  on  the  observation  of  large-scale 

*  The  Absolute  Relations  of  Time  and  Space  (Camb.  Univ.  Press).    He  uses  the  relation  of 
"before  and  after." 
v.  1 5 
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phenomena  can  be  applied  unmodified  to  the  happenings  which  involve  only 

a  small  number  of  quanta.  Assuming  that  this  is  the  right  solution  it  is  use- 
less to  look  for  any  means  of  introducing  quantum  phenomena  into  the  later 

formulae  of  our  theory ;  these  phenomena  have  been  excluded  at  the  outset 

by  the  adoption  of  a  coordinate  frame  of  reference. 

The  relation  of  displacement  between  point-events  and  the  relation  of 

"  equivalence  "  between  displacements  form  parts  of  one  idea,  which  are  only 
separated  for  convenience  of  mathematical  manipulation.  That  the  relation  of 

displacement  between  A  and  B  amounts  to  such-and-such  a  quantity  conveys 
no  absolute  meaning;  but  that  the  relation  of  displacement  between  A  and  B 

is  "  equivalent "  to  the  relation  of  displacement  between  C  and  D  is  (or  at 
any  rate  may  be)  an  absolute  assertion.  Thus  four  points  is  the  minimum 
number  for  which  an  assertion  of  absolute  structural  relation  can  be  made. 

The  ultimate  elements  of  structure  are  thus  four-point  elements.  By  adopting 

the  condition  of  affine  geometry  (91  "3),  I  have  limited  the  possible  assertion 
with  regard  to  a  four-point  element  to  the  statement  that  the  four  points  do, 
or  do  not,  form  a  parallelogram.  The  defence  of  affine  geometry  thus  rests  on 

the  not  unplausible  view  that  four-point  elements  are  recognised  to  be  differ- 
entiated from  one  another  by  a  single  character,  viz.  that  they  are  or  are  not 

of  a  particular  kind  which  is  conventionally  named  parallelog ramical.  Then 

the  analysis  of  the  parallelogram  property  into  a  double  equivalence  of  AB  to 

CD  and  AG  to  BD,  is  merely  a  definition  of  what  is  meant  by  the  equivalence 
of  displacements. 

I  do  not  lay  overmuch  stress  on  this  justification  of  affine  geometry.  It 

may  well  happen  that  four-point  elements  are  differentiated  by  what  might 
be  called  trapezoidal  characters  in  which  the  pairs  of  sides  are  not  commutable; 

so  that  we  could  distinguish  an  element  A  BBC  trapezoidal  with  respect  to 

AB,  CD  from  one  trapezoidal  with  respect  to  AC,  BD.  I  am  quite  prepared 

to  believe  that  the  affine  condition  may  not  always  be  fulfilled — giving  rise  to 
new  phenomena  not  included  in  this  theory.  But  it  is  probably  best  in  aiming 

at  the  widest  generality  to  make  the  generalisation  in  successive  steps,  and 

explore  each  step  before  ascending  to  the  next. 
In  reference  to  the  difficulties  encountered  in  the  most  general  description 

of  relation-structure,  the  possibility  may  be  borne  in  mind  that  in  physics  we 
have  not  to  deal  with  individual  relations  but  with  statistical  averages ;  and 

the  simplifications  adopted  may  have  become  possible  because  of  the  averaging. 

99.    The  tensor  *Fjtvv. 

Besides  furnishing  the  two  tensors  #M„  and  F^  of  which  Einstein  has 

made  good  use,  our  investigation  has  dragged  up  from  below  a  certain 
amount  of  apparently  useless  lumber.  We  have  obtained  the  full  tensor 

*R%<r  which  has  not  been  used  except  in  the  contracted  form — that  is  to  say 
certain  components  have  been  ignored  entirely,  and  others  have  not  been 
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considered  individually  but  as  sums.  Until  the  problem  of  electron-structure 

is  more  advanced  it  is  premature  to  reject  finally  any  material  which  could 

conceivably  be  relevant ;  although  at  present  there  is  no  special  reason  for 

anticipating  that  the  full  tensor  will  be  helpful  in  constructing  electrons. 

Accordingly  in  the  present  state  of  knowledge  the  tensor  *B'tkv<T  cannot 
be  considered  to  be  a  physical  quantity ;  it  contains  a  physical  quantity 

*6r/u„.  Two  states  of  the  world  which  are  described  by  different  *BellkV<r  but  the 
same  *&M„  are  so  far  as  we  know  identical  states;  just  as  two  configurations 
of  events  described  by  different  coordinates  but  the  same  intervals  are 

identical  configurations.  If  this  is  so,  the  Y„a  must  be  capable  of  other  trans- 
formations besides  coordinate  transformations  without  altering  anything  in 

the  physical  condition  of  the  world. 

Correspondingly  the  tensor  K£„  can  take  any  one  of  an  infinite  series  of 

values  without  altering  the  physical  state  of  the  world.  It  would  perhaps  be 

possible  to  show  that  among  these  values  is  g^K",  which  gives  Weyl's  geo- 
metry ;  but  I  am  not  sure  that  it  necessarily  follows.  It  has  been  suggested 

that  the  occurrence  of  non-physical  quantities  in  the  present  theory  is  a 

drawback,  and  that  Weyl's  geometry  which  contains  precisely  the  observed 

number  of  "  degrees  of  freedom  "  of  the  world  has  the  advantage.  For  some 
purposes  that  may  be  so,  but  not  for  the  problems  which  we  are  now  con- 

sidering. In  order  to  discuss  why  the  structure  of  the  world  is  such  that  the 

observed  phenomena  appear,  we  must  necessarily  compare  it  with  other 

structures  of  a  more  general  type ;  that  involves  the  consideration  of  "  non- 

physical  "  quantities  which  exist  in  the  hypothetical  comparison- worlds,  but 
are  not  of  a  physical  nature  because  they  do  not  exist  in  the  actual  world. 

If  we  refuse  to  consider  any  condition  which  is  conceivable  but  not  actual, 

we  cannot  account  for  the  actual;  we  can  only  prescribe  it  dogmatically. 

As  an  illustration  of  what  is  gained  by  the  broader  standpoint,  we  may 

consider  the  question  why  the  field  is  described  by  exactly  14  potentials. 

Our  former  explanation  attributed  this  to  the  occurrence  of  14  variables  in 

the  most  general  type  of  geometry.  We  now  see  that  this  is  fallacious  and 

that  a  natural  generalisation  of  Riemannian  geometry  admits  40  variables; 
and  no  doubt  the  number  could  be  extended.  The  real  reason  for  the  14 

potentials  is  because,  even  admitting  a  geometry  with  40  variables,  the 
fundamental  in-tensor  of  the  second  rank  has  14  variables;  and  it  is  the 

in-tensor  (a  measure  of  the  physical  state  of  the  world)  not  the  world-geometry 
(an  arbitrary  graphical  representation  of  it)  which  determines  the  phenomena. 

The  "lumber"  which  we  have  found  can  do  no  harm,  [fit  does  Dot  affect 

the  structure  of  electrons  or  quanta,  then  we  cannot  be  aware  of  it  because 

we  are  unprovided  with  appliances  for  detecting  it,  if  it  does  affect  their 

structure  then  it  is  just  as  well  to  have  discovered  it.  The  important  thing 

is  to  keep  it  out  of  problems  to  which  it  is  irrelevant,  and  this  is  easy  Bince 

i:»  -2 
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*(tm„  extracts  the  gold  from  the  dross.    It  is  quite  unnecessary  to  specialise 
the  possible  relation-structure  of  the  world  in  such  a  way  that  the  useless 
variables  have  the  fixed  value  zero  ;  that  loses  sight  of  the  interesting  result 
that  the  world  will  go  on  just  the  same  if  they  are  not  zero. 

We  see  that  two  points  of  view  may  be  taken — 
(1)  Only  those  things  exist  (in  the  physical  meaning  of  the  word)  which 

could  be  detected  by  conceivable  experiments. 

(2)  We  are  only  aware  of  a  selection  of  the  things  which  exist  (in  an 

extended  meaning  of  the  word),  the  selection  being  determined  by  the  nature 

of  the  apparatus  available  for  exploring  nature. 

Both  principles  are  valuable  in  their  respective  spheres.  In  the  earlier 

part  of  this  book  the  first  has  been  specially  useful  in  purging  physics  from 

metaphysical  conceptions.  But  when  we  are  inquiring  why  the  structure  of 

the  world  is  such  that  just  g^v  and  k^  appear  and  nothing  else,  we  cannot 

ignore  the  fact  that  no  structure  of  the  world  could  make  anything  else 

appear  if  we  had  no  cognizance  of  the  appliances  necessary  for  detecting  it. 
Therefore  there  is  no  need  to  insert,  and  puzzle  over  the  cause  of,  special 

limitations  on  the  world-structure,  intended  to  eliminate  everything  which 

physics  is  unable  to  determine.  The  world-structure  is  clearly  not  the  place 
in  which  the  limitations  arise. 

lOO.  Dynamical  consequences  of  the  general  properties  of 
world-invariants. 

We  shall  apply  the  method  of  §  61  to  world-invariants  containing  the 
electromagnetic  variables.  Let  ft  be  a  scalar-density  which  is  a  function  of 
g^v,  F^,  k,,.  and  their  derivatives  up  to  any  order,  so  that  for  a  given  region 

jftdr  is  an  invariant. 

It  would  have  been  possible  to  express  F^  in  terms  of  the  derivatives  of  kv  ; 

but  in  this  investigation  we  keep  it  separate,  because  special  attention  will 
be  directed  to  the  case  in  which  ft  does  not  contain  the  k^  themselves  but 

only  their  curl,  so  that  it  depends  on  g^  and  F^  only. 

By  partial  integration  we  obtain  as  in  §  61 

8fftdT=f($>"'8gltV-Sb<"'SF^  +  £i»8Kli)dT   (1001), 
for  variations  which  vanish  at  the  boundary  of  the  region.    Here 

*•;£■  fl"-^  »r£    <m 
and  P^v  is  a  symmetrical  tensor,  H^"  an  antisymmetrical  tensor. 

^=^(^>_^>) 3  (Stcu) 

dx„ 

dxv 
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rejecting  a  complete  differential, 

=  -  2£r8*„         by  (51-52). Hence 

S/JMr=//{^%M,,  +  (2£r  +  ̂)8/v}dT      (100-3). 

Now  suppose  that  the  &/M„  and  S/c^  arise  solely  from  arbitrary  variations 

8xa  of  the  coordinate-system  in  accordance  with  the  laws  of  transformation 
of  tensors  and  vectors.  The  invariant  will  not  be  affected,  so  that  its  variation 

vanishes.  By  the  same  process  as  in  obtaining  (01-3)  we  find  that  the  change 
of  8k^,  for  a  comparison  of  points  having  the  same  coordinates  xa  in  both  the 
original  and  varied  systems,  is 

Hence 

3  (8.Ta)     9/r 

(*>  +  2£T)  K  =  j|r  (*>  +  2£H  -  g~  {*.  (*>  +  2£r)}}  fa. 

rejecting  a  complete  differential.    Since  d^^/dx^  =  0  (73*76),  this  becomes 

Using  the  previous  reduction  for  6#M„  (61*4),  our  equation  (100*3)  reduces  to 

0  =  J  [2ft  -  Fp*  (4>  +  2#T)  +  *J&B  8*«dT      (100-41) 

for  all  arbitrary  variations  8cca  which  vanish  at  the  boundary  of  the  region. 
Accordingly  we  must  have  identically 

or,  dividing  by  V-  #,  and  changing  dummy  suffixes, 

PIv  =  -F.vH7-\{F^  +  k.Q:)   (10012). 

First  consider  the  case  when  ft  is  a  function  of  <-/„„  and  F^  only,  so  that 

Q*  =  0.   The  equation 

Plv  =  -F,VH7      (100-43) 

at  once  suggests  the  equations  of  the  mechanical  force  of  an  electromagnet  ic 
field 

M"   h   —  -  F   J"  =  -F   F'° 

It  has  already  become  plain  that  anything  recognised  in  physics  as  an 

energy-tensor  must  be  of  the  nature  of  a  Hamiltonian  derivative  of  some 

invariant  with  respect  to  g„v;   and  the  property  of  conservation    has   1   n 

shown  to  depend  on  this  fact.  We  now  see  that  the  general  theory  of  in- 

variants also  predicts  the  type  of  the  reaction  of  any  such  derived  tensor  to  the 

electromagnetic  field,  viz.  that  its  conservation  is  disturbed  by  a  pondero- 

motive  force  of  the  type  F^  H'f- 
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If  we  identify  P*  with  the  material  energy- tensor,  H*v  must  be  identified 
with  the  charge-arid-current  vector f,  so  that 

J»  =  WV    ....   (100-44), 

which  is  the  general  equation  given  in  (82*2 ).  It  follows  without  any  further 
specialisation  that  electric  charge  must  be  conserved  (J£  =  0). 

The  foregoing  investigation  shows  that  the  antisymmetric  part  of  the 

principal  world-tensor  will  manifest  itself  in  our  experience  by  producing 
the  effects  of  a  force.  This  force  will  act  on  a  certain  stream-vector  (in 
the  manner  that  electromagnetic  force  acts  on  a  charge  and  current) ;  and 

further  this  stream-vector  represents  the  flow  of  something  permanently  con- 
served. The  existence  of  electricity  and  the  qualitative  nature  of  electrical 

phenomena  are  thus  predicted. 

In  considering  the  results  of  substituting  a  particular  function  for  K,  it 

has  to  be  remembered  that  the  equation  (100-42)  is  an  identity.  We  shall 
not  obtain  from  it  any  fresh  law  connecting  g^v  and  ic^.  The  final  result  after 

making  the  substitutions  will  probably  be  quite  puerile  and  unworthy  of  the 

powerful  general  method  employed.  The  interest  lies  not  in  the  identity 
itself  but  in  the  general  process  of  which  it  is  the  result.  We  have  seen 

reason  to  believe  that  the  process  of  Hamiltonian  differentiation  is  actually 

the  process  of  creation  of  the  perceptual  world  around  us,  so  that  in  this 

investigation  we  are  discovering  the  laws  of  physics  by  examining  the  mode 
in  which  the  physical  world  is  created.  The  identities  expressing  these 

laws  may  be  trivial  from  the  mathematical  point  of  view  when  separated 

from  the  context ;  but  the  present  mode  of  derivation  gives  the  clue  to  their 

significance  in  our  experience  as  fundamental  laws  of  nature*. 

To  agree  with  Maxwell's  theory  it  is  necessary  to  have  H'lv  =  F*v.  Ac- 
cordingly by  (100'2)  the  invariant  K  should  contain  the  term  -\F>LV F^. 

The  only  natural  way  in  which  this  can  be  combined  linearly  with  other 

terms  not  containing  F^  is  in  one  of  the  invariants  ̂ G^G"*  or  —  ̂*Gflv*GIJ-v. 
We  take 

K  =  l*G„*G^ 

=  \  (R^  +  F,v)  (R»»  +  **) 

=  ̂ (RliVR^-FtlvF^)   (100-5) 
by  the  antisymmetric  properties  of  F^. 

The  quantity  R^  can  be  expressed  as  a  function  of  the  variables  in  two 

ways,  either  by  the  gauging-equation 

t  This  definition  of  electric  charge  through  the  mechanical  effects  experienced  by  charged 

bodies  corresponds  exactly  to  the  definition  employed  in  practice.  Our  previous  definition  of  it 

as  F1"'  corresponded  to  a  measure  of  the  strength  of  the  singularity  in  the  electromagnetic  field. 

X  The  definitive  development  of  the  theory  ends  at  this  point.  From  here  to  the  end  of  §  102 

we  discuss  certain  possibilities  which  may  be  on  the  track  of  further  progress ;  but  there  is  no 

certain  guidance,  and  it  may  be  suspected  that  the  right  clue  is  still  lacking. 
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or  by  the  general  expressions  (87*5)  and  (94'61).  If  the  first  form  is  adopted 
we  obtain  an  identity,  which,  however,  is  clearly  not  the  desired  relation  of 
energy. 

If  we  adopt  the  more  general  expression  some  care  is  required.  Pre- 

sumably 5i  should  be  an  in-invariant-density  if  it  has  the  fundamental 

importance  supposed.  As  written  it  is  not  formally  in-invariant  in  our 

generalised  theory  though  it  is  in  Weyl's  theory.  We  can  make  it  in-invariant 
by  writing  R^R^  s/—  g  in  the  form 

where  the  g*v  are  to  have  the  values  for  the  natural  gauge,  but  in  the  in- 
tensor  R^  the  general  values  for  any  gauge  may  be  used.  The  general  theory 

becomes  highly  complicated,  and  we  shall  content  ourselves  with  the  partially 

generalised  expression  in  Weyl's  theory,  which  will  sufficiently  illustrate  the 
procedure.  In  this  case  RfJLV=\gIJ_v,  but  A,  is  a  variable  function  of  position. 

Accordingly  R^fRftv  =  4\2  =  {*G\  so  that 

£  =  |(*Gfc-4i^i^)v'^    (100-6). 

Comparing  with  (90'1)  we  see  that  ft  is  equivalent  to  the  action  adopted  by 
Weyl. 

This  appears  to  throw  light  on  the  meaning  of  the  combination  of  '<> 
with  F^F*"  which  we   have   recognised  in  (001)  as   having  an  important 

significance.   It  is  the  degenerate  form  in  Weyl's  gauge  of  the  natural  com- 
bination *GIXV*GV<L.    The  alternation  of  the  suffixes  is  primarily  adopted  as  a 

trick  to  obtain  the  required  sign,  but  is  perhaps  justifiable. 

If  this  view  of  the  origin  of  (90'1)  is  correct,  the  constant  a  must  be 

equal  to  4.  Accordingly  /3  =  1/2  A.,  and  by  (90'51)  the  whole  energy- tensor 
and  the  electromagnetic  energy-tensor  are  reduced  to  the  same  units  in  the 
expressions 

h>v,     87r\2>"   (100-7). 
The  numerical  results  obtainable  from  this  conclusion  will  be  discussed  in 

§102. 
In  the  discussion  of  §  90  it  was  assumed  that  P*v  (=llK/1V/M„)  vanished. 

I  do  not  think  there  is  any  good  reason  for  introducing  an  arbitrary  action- 

principle  of  this  kind,  and  it  seems  more  likely  that  P*"  will  be  a  non- 
vanishing  energy-tensor. 

This  seems  to  leave  a  superfluity  of  energy-tensors,  because  owing  to  the 

non-vanishing  coefficient  Q*  we  have  the  term  (k^k"  —  hf'LVKaKa)  in  (90~>l  ) 
which  has  to  play  some  role.  In  §  90  this  was  supposed  to  be  the  material 

energy- tensor,  but  I  am  inclined  to  think  that  it  has  another  interpretation. 

In  order  to  liberate  material  energy  we  must  relax  the  binding  forces  <>t  the 
electrons,  allowing  them  to  expand.  Suppose  that  we  make  a  small  virtual 
change  of  this  kind.  In  addition  to  the  material  energy  liberated  by  the 

process  there  will  be  another  consequential  change   in  the  energy  ol   the 
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region.  The  electron  furnishes  the  standard  of  length,  so  that  all  the  gravi- 

tational energy  will  now  have  to  be  re-gauged.  It  seems  likely  that  the 

function  of  the  term  (/e^  kv  —  \g*v KaKa)  is  to  provide  for  this  change.  If  so, 

nothing  hinders  us  from  identifying  P**"  with  the  true  material  energy- 
tensor. 

lOl.    The  generalised  volume. 

Admitting  that  *Gflv  is  the  building-material  with  which  we  have  to  con- 
struct the  physical  world,  let  us  examine  what  are  the  simplest  invariants 

that  can  be  formed  from  it.  The  meaning  of  "simple"  is  ambiguous,  and 
depends  to  some  extent  on  our  outlook.  I  take  the  order  of  simplicity  to  be 

the  order  in  which  the  quantities  appear  in  building  the  physical  world  from 

the  material  *6rM„.  Before  introducing  the  process  of  gauging  by  which  we 
obtain  the  g^,  and  later  (by  a  rather  intricate  use  of  determinants)  the  g*v, 
we  can  form  in-invariants  belonging  respectively  to  a  one-dimensional,  a  two- 
dimensional  and  a  four-dimensional  domain. 

(1)  For  a  line-element  {dxf-,  the  simplest  in-invariant  is 

*GtJ.v(dxy(dx)v   (10111), 
which  appears  physically  as  the  square  of  the  length. 

(2)  For  a  surface-element  dS*v,  the  simplest  in-invariant  is 
•G^dS""   (10112), 

which  appears  physically  as  the  flux  of  electromagnetic  force.  It  may  be 

remarked  that  this  invariant,  although  formally  pertaining  to  the  surface- 
element,  is  actually  a  property  of  the  bounding  circuit  only. 

(3)  For  a  volume-element  dr,  the  simplest  in-invariant  is 

V=>J{-\*G*v\)dT      (101-13), 

which  has  been  called  the  generalised  volume,  but  has  not  yet  received  a 
physical  interpretation. 

We  shall  first  calculate  j  *G>„|  for  Galilean  coordinates.  Since 

we  have  on  inserting  the  Galilean  values 

-X  -7  /3  -X 

7  -X  -a  - Y 

-/3       a  -X  -Z 
X  Y  Z        X 

■—{\*  +  \*(te  +  p  +  <f-X*  -Y*-Z*)-(aX+/3Y+yZy} 

  (101-2). 
The  relation  of  the  absolute  unit  of  electromagnetic  force  (which  is  here  being- 
used)  to  the  practical  unit  is  not  yet  known,  but  it  seems  likely  that  the  fields 
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used  in  laboratory  experiments  correspond  to  small  values  of  F^f.  If  this  is 

so  we  may  neglect  the  fourth  powers  of  F^v  and  obtain  approximately 

=  (X1  +  I  F„  F» )  dr      by  ( 7 7 -3). 

Since  V  is  an  invariant  we  can  at  once  write  down  the  result  for  any  other 
coordinate-system,  viz. 

V^{\-  +  \F^F^)^^~gdr   (101-31), 
or  in  the  natural  gauge  R^  =  \^M„,  this  can  be  written 

V=  {(R^Rr  +  F„F»)  s/~gdr 

=  \*G^G^ \i~gdr    (101-32). 
Thus  if  the  generalised  volume  is  the  fundamental  in-invariant  from  which 

the  dynamical  laws  arise,  we  may  expect  that  our  approximate  experimental 

laws  will  pertain  to  the  invariant  *(rM„*0"  V '  —  g  dr,  which  is  a  close  approxi- 
mation to  it  except  in  very  intense  electromagnetic  fields. 

In  (10O5)  we  took  K  =  *G>„  *GvtL.  The  alternation  of  the  suffixes  seems  to 
be  essential  if  tlK/rl^„  is  to  represent  the  material  energy  (or  to  be  zero 

according  to  Weyl's  action-principle).  If  we  do  not  alternate  the  suffixes  the 
Hamiltonian  derivative  contains  the  whole  energy-tensor  plus  the  electro- 

magnetic energy-tensor,  whereas  we  must  naturally  attach  more  significance 
to  the  difference  of  these  two  tensors.    It  may,  however,  be  noted  that 

*G^*G^  =  *Glxv*G^-Klll,^-(*Gtil,*G^)    (101-33) 

(variations  of  k^  being  ignored  except  in  so  far  as  they  affect  Fhl).  It  would 

seem  therefore  that  the  invariant  K  previously  discussed  arises  from  Fby  the 

process  of  ignoration  of  the  coordinates  a^.  Equation  (101-33)  represents 
exactly  the  usual  procedure  for  obtaining  the  modified  Lagrangian  function  in 

dynamics. 

If  this  view  is  correct,  that  the  invariants  which  give  the  ordinary  equations 

adopted  in  physics  are  really  approximations  to  more  accurate  expressions 

based  on  the  generalised  volume,  it  becomes  possible  to  predict  the  second- 
order  terms  which  are  needed  to  complete  the  equations  currently  used.  It 

will  sufficiently  illustrate  this  if  we  consider  the  corrections  to  Maxwell's 
equations  suggested  b}7  this  method. 

Whereas  in  (79'32)  we  found  that  J"**  was  the  Hamiltonian  derivative  of 
IF^F^.*/  —  gdr,  we  now  suppose  that  it  is  more  exactly  the  Hamiltonian 

derivative  of  \/(—  j  *GliV  \)dr  with  respect  to  k^.    We  use  Galilean  (or  nal  oral  I 
coordinates;  and  it  is  convenient  to  use  the  notation  of  §  82  in  which  (</,  b,  c) 
takes  the  place  of  (a,  /3,  7). 

Let 

A  =  -  1  *Gllv  |  =  V  +  \a  (a-  +  bn-  +  c2  -  X*  -  r-'  -  Za)  -  S°; 
t  This  is  doubtful,  since  the  calculations  in  the  next  section  do  not  bear  it  1   it. 

X  We  consider  only  the  variations  of  k^  as  affecting  F,,.,, . 
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S  =  aX  +  bY+cZ. 

CH.  VII 

Then  S(VA)  =  -^AX2j(a- «W..._(x+*)„- 
Take  a  permeability  and  specific  inductive  capacity  given  by 

1       VA 

/*■
 

.(101-41), 

so  that 

and  let 

Then 

a(VA)=(a-xs')^---jH 

K      X2 a=Va/VA,     P=\2X/v/A, 

>S'=67v'A  =  («X+/3F+7^)/X
2 
  (101-42). 

/3jy   3G\ 

+  jl  (P  +  aflfO  + 1  (Q  +  Mf) + lz  (R  +  osy  8  (-  <&), 
dz rejecting  a  complete  differential.    Equating  the  coefficients  to  the  charge-and- 

current  vector  (<tx,  a-y,  az,  p)  we  have 

ax  + 1  (P  +  aS')  =  1  (7  -  ̂ 0  -  A  08  -  FS'), 

P  =  A  (P  +  o50  +  |  (Q  +  65')  +  £  (P  +  cS'). 

a* 

a_ 

dz 

These  reduce  to  the  classical  form 

provided  that 

dy_dJ}=d_P  +  a> 
dy      dz       dt 
dP     d_Q     dR_   , 
dx      dy       dz 

d(aS')     d(ZS')     d(YS')\ 

.(101-5), 

P  =  P 
These  at  once  reduce  to 

dt  dy  dz 

d  (aS')  _  d  (b£T)  _  d  (cS') dec  dy  dz 

,  dS'      r,dS'     T_9*SY/\ 

.(1016). 

a 

djr 

dx 
dy  dz 

.(101-7). 

The  effect  of  the  second-order  terms  is  thus  to  make  the  aether  appear  to 
have  a  specific  inductive  capacity  and  permeability  given  by  (101-41)  and 
also  to  introduce  a  spurious  charge  and  current  given  by  (101-7). 
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This  revision  makes  no  difference  whatever  to  the  propagation  of  light. 
Since  \f(/J-K)  is  always  unity,  the  velocity  of  propagation  is  unaltered;  and  no 

spurious  charge  or  current  is  produced  because  S'  vanishes  when  the  magnetic 
and  electric  forces  are  at  right  angles. 

It  would  be  interesting  if  all  electric  charges  could  be  produced  in  this 

way  by  the  second-order  terms  of  the  pure  field  equations,  so  that  there  would 
be  no  need  to  introduce  the  extraneous  charge  and  current  (crx,  ay,  az,  p). 
I  think,  however,  that  this  is  scarcely  possible.  The  total  spurious  charge  in 

a  three-dimensional  region  is  equal  to 

ffj(P'-p)dxdydz=-jJBnSdS      by  (101-6), 
where  Bn  is  the  normal  magnetic  induction  across  the  boundary.  This  requires 

that  BnS'  in  the  field  of  an  electron  falls  off  only  as  the  inverse  square.  It  is 
scarcely  likely  that  the  electron  has  the  distant  magnetic  effects  that  are  implied. 

It  is  readily  verified  that  the  spurious  charge  is  conserved  independently 
of  the  true  charge. 

It  has  seemed  worth  while  to  show  in  some  detail  the  kind  of  amendment 

to  Maxwell's  laws  which  may  result  from  further  progress  of  theory.  Perhaps 
the  chief  interest  lies  in  the  way  in  which  the  propagation  of  electromagnetic 

waves  is  preserved  entirely  unchanged.  But  the  present  proposals  are  not 
intended  to  be  definitive. 

102.    Numerical  values. 

Our  electromagnetic  quantities  have  been  expressed  in  terms  of  some 
absolute  unit  whose  relation  to  the  C.G.s.  system  has  hitherto  been  unknown. 

It  seems  probable  that  we  are  now  in  a  position  to  make  this  unit  more 

definite  because  we  have  found  expressions  believed  to  be  physically  signi- 

ficant in  which  the  whole  energy-tensor  and  electromagnetic  energy-tensor 

occur  in  unforced  combination.  Thus  according  to  (100-6)  Weyl's  constant  a 
in  §  90  is  4,  so  that  ft  =  1/2X.  Accordingly  in  (9051)  we  have  the  combination 

A. 

which  can  scarcely  be  significant  unless  it  represents  the  difference  of  the  two 

tensors  reduced  to  a  common  unit.    It  appears  therefore  that  in  an  electro- 
magnetic field  we  must  have 

E^  =  SirXT^  =  -\  {O*-  ̂ " (G -  2X)}, 

where  E<*v  is  expressed  in  terms  of  the  natural  unit  involved  in  F^.    The 

underlying  hypothesis  is  that  in  *GfJLV  the  metrical  and  electrical  variables 
occur  in  their  natural  combination. 

The  constant  A.,  which  determines  the  radius  of  curvature  of  the  world,  is 

unknown;  but  since  our  knowledge  of  the  stellar  universe  extends  nearly  to 

10M  cm.,  we  shall  adopt 

X  =  10-"1  cm.-3. 
It  may  be  much  smaller. 
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Consider  an  electrostatic  field  of  1500  volts  per  cm.,  or  5  electrostatic  units. 

The  density  of  the  energy  is  52/87r  or  practically  1  erg  per  cubic  cm.  The 
mass  is  obtained  by  dividing  by  the  square  of  the  velocity  of  light,  viz. 

1*1 .  10-21  gm.  We  transform  this  into  gravitational  units  by  remembering 

that  the  sun's  mass,  1*99  .  1033  gm.,  is  equivalent  to  1*47  .  105  cm.  Hence  we 
find— 

The  gravitational  mass-density  T\  of  an  electric  field  of  1500  volts 

per  cm.  is  8'4 .  10_BO  cm.  per  c.c. 

According  to  the  equation  E^v  =  SirXT"-''  we  shall  have 

E\  =  21 .  10-98  cm.-4. 
For  an  electrostatic  field  along  the  axis  of  x  in  Galilean  coordinates  we 

have 
E'4  1     77>2 A4  =  i^  14> 

so  that  Fu  =  2. 10-49 
in  terms  of  the  centimetre.  The  centimetre  is  not  directly  concerned  as  a 

gauge  since  Fu  is  an  in-tensor;  but  the  coordinates  have  been  taken  as 
Galilean,  and  accordingly  the  centimetre  is  also  the  width  of  the  unit  mesh. 

Hence  an  electric  force  of  1500  volts  per  cm.  is  expressed  in  natural 

measure  by  the  number  2  .  10-49  referred  to  a  Galilean  coordinate-system  with 
a  centimetre  mesh. 

Let  us  take  two  rods  of  length  I  at  a  distance  8x1  cm.  apart  and  maintain 

them  at  a  difference  of  potential  8k4  for  a  time  8x4  (centimetres).  Compare 

their  lengths  at  the  beginning  and  end  of  the  experiment.  If  they  are  all  the 

time  subject  to  parallel  displacement  in  space  and  time  there  should  be  a 

discrepancy  81  between  the  two  comparisons,  given  by  (84'4) 

=  F4l  8^!  8x4 

=  ̂     8z\  8x4  =  8k4  8x4. 

6xx 

For  example  if  our  rods  are  of  metre-length  and  maintained  for  a  year 

(1  light-year  =  1018  cm.)  at  a  potential  difference  of  1£  million  volts,  the 
discrepancy  is 

&  =  102.2.10-49.103.1018cm. 

=  2  .  10-26  cm. 
We  have  already  concluded  that  the  length  of  a  rod  is  not  determined  by 

parallel  displacement ;  but  it  would  clearly  be  impossible  to  detect  the  dis- 
crepancy experimentally  if  it  were  so  determined. 

The  value  of  Fu  depends  on  the  unit  mesh  of  the  coordinate-system.  If 

we  take  a  mesh  of  width  1025  cm.  and  therefore  comparable  with  the  assumed 

radius  of  the  world  the  value  must  be  multiplied  by  1050  in  accordance  with 
the  law  of  transformation  of  a  covariant  tensor.  Hence  referred  to  this  natural 

mesh-system  the  natural  unit  of  electric  force  is  about  75  volts  per  cm.  The 
result  rests  on  our  adopted  radius  of  space,  and  the  unit  may  well  be  less  than 
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75  volts  per  cm.  but  can  scarcely  be  larger.  It  is  puzzling  to  find  that  the 
natural  unit  is  of  the  size  encountered  in  laboratory  experiments ;  we  should 

have  expected  it  to  be  of  the  order  of  the  intensity  at  the  boundary  of  an 
electron.  This  difficulty  raises  some  doubt  as  to  whether  we  are  quite  on  the 
right  track. 

The  result  may  be  put  in  another  form  which  is  less  open  to  doubt. 
Imagine  the  whole  spherical  world  filled  with  an  electric  field  of  about  75  volts 

per  cm.  for  the  time  during  which  a  ray  of  light  travels  round  the  world.  The 

electromagnetic  action  is  expressed  by  an  invariant  which  is  a  pure  number 

independent  of  gauge  and  coordinate  systems  ;  and  the  total  amount  of  action 
for  this  case  is  of  the  order  of  magnitude  of  the  number  1.  The  natural  unit 

of  action  is  evidently  considerably  larger  than  the  quantum.  With  the  radius 

of  the  world  here  used  I  find  that  it  is  10115  quanta. 

103.    Conclusion. 

We  may  now  review  the  general  physical  results  which  have  been  estab- 
lished or  rendered  plausible  in  the  course  of  our  work.  The  numbers  in  brackets 

refer  to  the  sections  in  which  the  points  are  discussed. 

We  offer  no  explanation  of  the  occurrence  of  electrons  or  of  quanta ;  but 

in  other  respects  the  theory  appears  to  cover  fairly  adequately  the  phenomena 

of  physics.  The  excluded  domain  forms  a  large  part  of  modern  physics,  but  it 
is  one  in  which  all  explanation  has  apparently  been  baffled  hitherto.  The 

domain  here  surveyed  covers  a  system  of  natural  laws  fairly  complete  in  itself 

and  detachable  from  the  excluded  phenomena,  although  at  one  point  difficulties 

arise  since  it  comes  into  close  contact  with  the  problem  of  the  nature  of  the 
electron. 

We  have  been  engaged  in  world-building — the  construction  of  a  world 
which  shall  operate  under  the  same  laws  as  the  natural  world  around  us.  The 

most  fundamental  part  of  the  problem  falls  under  two  heads,  the  building- 
material  and  the  process  of  building. 

The  building -material.  There  is  little  satisfaction  to  the  builder  in  the 
mere  assemblage  of  selected  material  already  possessing  the  properties  which 
will  appear  in  the  finished  structure.  Our  desire  is  to  achieve  the  purpose  with 

unselected  material.  In  the  game  of  world-building  we  lose  a  point  whenever 
we  have  to  ask  for  extraordinary  material  specially  prepared  for  the  end  in 

view.  Considering  the  most  general  kind  of  relation-structure  which  we  have 

been  able  to  imagine — provided  always  that  it  is  a  structure — we  have  found 

that  there  will  always  exist  as  building-material  an  in-tensor  *G>„  consisting 
of  symmetrical  and  antisymmetrical  parts  R^  and  F^,  the  latter  being  the 
curl  of  a  vector  (97,  98).  This  is  all  that  we  shall  require  for  the  domain  of 

physics  not  excluded  above. 

The  process  of  building.  Here  from  the  nature  of  the  case  it  is  impossible 

to  avoid  trespassing  for  a  moment  beyond  the  bounds  of  physics.    The  world 
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which  we  have  to  build  from  the  crude  material  is  the  world  of  perception,  and 

the  process  of  building  must  depend  on  the  nature  of  the  percipient.  Many 

things  may  be  built  out  of  *6rM„,  but  they  will  only  appear  in  the  perceptual 
world  if  the  percipient  is  interested  in  them.  We  cannot  exclude  the  con- 

sideration of  what  kind  of  things  are  likely  to  appeal  to  the  percipient.  The 

building  process  of  the  mathematical  theory  must  keep  step  with  that  process 

by  which  the  mind  of  the  percipient  endows  with  vivid  qualities  certain 

selected  structural  properties  of  the  world.  We  have  found  reason  to  believe 

that  this  creative  action  of  the  mind  follows  closely  the  mathematical  process 
of  Hamiltonian  differentiation  of  an  invariant  (64). 

In  one  sense  deductive  theory  is  the  enemy  of  experimental  physics.  The 

latter  is  always  striving  to  settle  by  crucial  tests  the  nature  of  the  fundamental 

things ;  the  former  strives  to  minimise  the  successes  obtained  by  showing  how 

wide  a  nature  of  things  is  compatible  with  all  experimental  results.  We  have 

called  on  all  the  evidence  available  in  an  attempt  to  discover  what  is  the  exact 

invariant  whose  Hamiltonian  differentiation  provides  the  principal  quantities 

recognised  in  physics.  It  is  of  great  importance  to  determine  it,  since  on  it 

depend  the  formulae  for  the  law  of  gravitation,  the  mass,  energy,  and  mo- 
mentum and  other  important  quantities.  It  seems  impossible  to  decide  this 

question  without  appeal  to  a  perhaps  dubious  principle  of  simplicity ;  and  it 
has  seemed  a  flaw  in  the  argument  that  we  have  not  been  able  to  exclude 

more  definitely  the  complex  alternatives  (62).  But  is  it  not  rather  an  unhoped 

for  success  for  the  deductive  theory  that  all  the  observed  consequences  follow 

without  requiring  an  arbitrary  selection  of  a  particular  invariant  ? 

We  have  shown  that  the  physical  things  created  by  Hamiltonian  differen- 
tiation must  in  virtue  of  mathematical  identities  have  certain  properties.  When 

the  antisymmetric  part  F^v  of  the  in-tensor  is  not  taken  into  account,  they 
have  the  property  of  conservation  or  permanence ;  and  it  is  thus  that  mass, 

energy  and  momentum  arise  (61).  When  F^  is  included,  its  modifying  effect 
on  these  mechanical  phenomena  shows  that  it  will  manifest  itself  after  the 

manner  of  electric  and  magnetic  force  acting  respectively  on  the  charge-com- 

ponent and  current-components  of  a  stream-vector  (]  00).  Thus  the  part  played 
by  FpV  in  the  phenomena  becomes  assigned. 

All  relations  of  space  and  time  are  comprised  in  the  in-invariant  *Glivd.rflidxv, 
which  expresses  an  absolute  relation  (the  interval)  between  two  points  with 

coordinate  differences  dx^  (97).  To  understand  why  this  expresses  space  and 

time,  we  have  to  examine  the  principles  of  measurement  of  space  and  time  by 

material  or  optical  apparatus  (95).  It  is  shown  that  the  conventions  of  measure- 
ment introduce  an  isotropy  and  homogeneity  into  measured  space  which  need 

not  originally  have  any  counterpart  in  the  relation-structure  which  is  being 

surveyed.  This  isotropy  and  homogeneity  is  exactly  expressed  by  Einstein's 
law  of  gravitation  (u6). 

The  transition  from  the  spatio-temporal  relation  of  interval  to  space  and 
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time  as  a  framework  of  location  is  made  by  choosing  a  coordinate-frame  such 

that  the  quadratic  form  *GliUdxIJLdxv  breaks  up  into  the  sum  of  four  squares  (4). 
It  is  a  property  of  the  world,  which  we  have  had  to  leave  unexplained,  that 
the  sign  of  one  of  these  squares  is  opposite  to  that  of  the  other  three  (9) ;  the 

coordinate  so  distinguished  is  called  time.  Since  the  resolution  into  four  squares 

can  be  made  in  many  ways,  the  space-time  frame  is  necessarily  indeterminate, 
and  the  Lorentz  transformation  connecting  the  spaces  and  times  of  different 

observers  is  immediately  obtained  (5).  This  gives  rise  to  the  special  theory  of 
relativity.  It  is  a  further  consequence  that  there  will  exist  a  definite  speed 

which  is  absolute  (6);  and  disturbances  of  the  tensor  i-M„  (electromagnetic 
waves)  are  propagated  in  vacuum  with  this  speed  (74).  The  resolution  into 

four  squares  is  usually  only  possible  in  an  infinitesimal  region  so  that  a  world- 
wide frame  of  space  and  time  as  strictly  defined  does  not  exist.  Latitude  is, 

however,  given  by  the  concession  that  a  space-time  frame  maybe  used  which 
does  not  fulfil  the  strict  definition,  observed  discrepancies  being  then  attributed 

to  a  field  of  force  (16).  Owing  to  this  latitude  the  space-time  frame  becomes 
entirely  indeterminate  ;  any  system  of  coordinates  may  be  described  as  a  frame 
of  space  and  time,  and  no  one  system  can  be  considered  superior  since  all  alike 

require  a  field  of  force  to  justify  them.  Hence  arises  the  general  theory  of 
relativity. 

The  law  of  gravitation  in  continuous  matter  is  most  directly  obtained  from 

the  identification  of  the  energy-tensor  of  matter  (54),  and  this  gives  again  the 
law  for  empty  space  as  a  particular  case.  This  mode  of  approach  is  closely 
connected  with  the  previous  deduction  of  the  law  in  empty  space  from  the 

isotropic  properties  introduced  by  the  processes  of  measurement,  since  the 

components  of  the  energy-tensor  are  identified  with  coefficients  of  the  quadric 
of  curvature  (65).  To  deduce  the  field  of  a  particle  (38)  or  the  motion  of  a 

particle  in  the  field  (56),  we  have  to  postulate  symmetrical  properties  of  the 

particle  (or  average  particle) ;  but  these  arise  not  from  the  particle  itself  but 

because  it  provides  the  standard  of  symmetry  in  measurement  (G6).  It  is  then 
shown  that  the  Newtonian  attraction  is  accounted  for  (39) ;  as  well  as  the 

refinements  introduced  by  Einstein  in  calculating  the  perihelion  of  Mercury 

(40)  and  the  deflection  of  light  (41). 

It  is  possible  to  discuss  mechanics  without  electrodynamics  but  scarcely 

possible  to  discuss  electrodynamics  without  mechanics.  Hence  a  certain  diffi- 
culty arises  in  our  treatment  of  electricity,  because  the  natural  linking  of  the 

two  subjects  is  through  the  excluded  domain  of  electron-structure.  In  practice 
electric  and  magnetic  forces  are  defined  through  their  mechanical  effects  en 

charges  and  currents,  and  these  mechanical  effects  have  been  investigated  in 

general  terms  (100)  and  with  particular  reference  to  the  electron  (80).  ('in- 

half  of  Maxwell's  equations  is  satisfied  because  F^v  is  the  curl  of  a  vector  (92), 
and  the  other  half  amounts  to  the  identification  of  F?  with  the  charge-and- 

current  vector  (73).  The  electromagnetic  energy-tensor  as  deduced  is  round 
to  agree  in  Galilean  coordinates  with  the  classical  formulae  (77). 
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Since  a  field  of  force  is  relative  to  the  frame  of  space-time  which  is  used, 
potential  energy  can  no  longer  be  treated  on  the  same  footing  with  kinetic 
energy.  It  is  not  represented  by  a  tensor  (59)  and  becomes  reduced  to  an 

artificial  expression  appearing  in  a  mathematical  mode  of  treatment  which  is 

no  longer  regarded  as  the  simplest.  Although  the  importance  of  "  action  "  is 
enhanced  on  account  of  its  invariance,  the  principle  of  least  action  loses  in 

status  since  it  is  incapable  of  sufficiently  wide  generalisation  (60,  63). 
In  order  that  material  bodies  may  be  on  a  definite  scale  of  size  there  must 

be  a  curvature  of  the  world  in  empty  space.  Whereas  the  differential  equations 

governing  the  form  of  the  world  are  plainly  indicated,  the  integrated  form  is 
not  definitely  known  since  it  depends  on  the  unknown  density  of  distribution 

of  matter.  Two  forms  have  been  given  (67),  Einstein's  involving  a  large  quantity 

of  matter  and  de  Sitter's  a  small  quantity  (69) ;  but  whereas  in  the  latter  the 
quantity  of  matter  is  regarded  as  accidental,  in  the  former  it  is  fixed  in  accord- 

ance with  a  definite  law  (71).  This  law  at  present  seems  mysterious,  but  it  is 

perhaps  not  out  of  keeping  with  natural  anticipations  of  future  developments 
of  the  theory.  On  the  other  hand  the  evidence  of  the  spiral  nebulae  possibly 

favours  de  Sitter's  form  which  dispenses  with  the  mysterious  laAv  (70). 
Can  the  theory  of  relativity  ultimately  be  extended  to  account  in  the  same 

manner  for  the  phenomena  of  the  excluded  domain  of  physics,  to  which  the 

laws  of  atomicity  at  present  bar  the  entrance  ?  On  the  one  hand  it  would 

seem  an  idle  exaggeration  to  claim  that  the  magnificent  conception  of  Einstein 

is  necessarily  the  key  to  all  the  riddles  of  the  universe ;  on  the  other  hand  we 

have  no  reason  to  think  that  all  the  consequences  of  this  conception  have 

become  apparent  in  a  few  short  years.  It  may  be  that  the  laws  of  atomicity 
arise  only  in  the  presentation  of  the  world  to  us,  according  to  some  extension 

of  the  principles  of  identification  and  of  measurement.  But  it  is  perhaps  as 

likely  that,  after  the  relativity  theory  has  cleared  away  to  the  utmost  the 

superadded  laws  which  arise  solely  in  our  mode  of  apprehension  of  the  world 

about  us,  there  will  be  left  an  external  world  developing  under  specialised 
laws  of  behaviour. 

The  physicist  who  explores  nature  conducts  experiments.  He  handles 
material  structures,  sends  rays  of  light  from  point  to  point,  marks  coincidences, 

and  performs  mathematical  operations  on  the  numbers  which  he  obtains.  His 

result  is  a  physical  quantity,  which,  he  believes,  stands  for  something  in  the 

condition  of  the  world.  In  a  sense  this  is  true,  for  whatever  is  actually  occur- 
ring in  the  outside  world  is  only  accessible  to  our  knowledge  in  so  far  as  it 

helps  to  determine  the  results  of  these  experimental  operations.  But  we  must 

not  suppose  that  a  law  obeyed  by  the  physical  quantity  necessarily  has  its  seat 

in  the  world-condition  which  that  quantity  "  stands  for  " ;  its  origin  may  be 
disclosed  by  unravelling  the  series  of  operations  of  which  the  physical  quantity 

is  the  result.  Results  of  measurement  are  the  subject-matter  of  physics;  and 
the  moral  of  the  theory  of  relativity  is  that  we  can  only  comprehend  what  the 

physical  quantities  stand  for  if  we  first  comprehend  what  they  are. 
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The  numbers  refer  to  pages 

Absolute  change  69  ;  physical  quantities  5 
(footnote) ;  properties  of  a  region  205  ; 
rotation  99 

Abstract  geometry  and  natural  geometry  37 
Acceleration  of  light-pulse  91  ;  of  charged 

particle  189  ;  determined  by  symmetrical 
condition  192 

Action,  material  or  gravitational  137  ;  elec- 

tromagnetic 187 ;  Weyl's  formula  209, 
231  ;  numerical  values  of  237 

Action,  principle  of  Stationary  139,  147 
Addition  of  velocities  18,  21,  22 
Adjustment  and  persistence  208 
Aether  224 

Affine  geometry  214 
Angle  between  two  vectors  58 
Antisymmetrical  tensors  67  ;  of  fourth  rank 

107 

Aspect,  relation  of  49 
Associated  tensors  56 

Atom,  time  of  vibration  of  91  ;  in  de  Sittei-'s 
world  157,  164 

Atomicity  120  (footnote),  139,  146 

Be  va.  (Riemann-Christoffel  tensor)  72,  226 
Bifurcation  of  geometry  and  electrodynamics 

223 

Canonical  coordinates  79 
Centrifugal  force  38 
Charge,  electric,  conservation  of  173  ;   in- 

variance  of  174 

Charge-and-current    vector     172  ;     general 
existence  of  230 

Christoffel's  3-index  symbols  58  ;  generalisa- tion of  203 

Clocks,  transport  of  15,  27 
Comparability  of  proximate  relations  225 
Components,  covariant  and  contra  variant  57 
Composition  of  velocities  21,  22 
Condition  of  tbe  world  3,  47 
Configuration  of  events  10 
Conservation,  formal  law  of  134 
Conservation  of  momentum  and  mass  30  ; 

of  energy  32  ;   of  matter  33  ;  of  electric 
charge  173 

Constitutive  equations  34,  195 
Continuity,  equation  of  117  ;  in  electric  flow 

173 

Continuous  matter,  gravitation  in  101, 119 
Contracted     derivative     (divergence)    113  ; 

second  derivative  ( Q )  64 

Contraction,  FitzGerald  25 
Contraction  of  tensors  53 
Contravariant  vectors  43,  44  ;  tensors  52  ; 

derivatives  62 

Coordinate-systems,  rectangular  13 ;  Galilean 
38  ;  canonical  79  ;  natural  80 ;  proper  80  ; 
statical  81  ;  isotropic  93 

Coordinates  9  ;  general  transformation  of  34, 
43  ;    representation  of  displacement  49  ; 
difficulty  in  the  introduction  of  225 

Covariant  derivative  of  vector  60  ;  of  tensor 
62,  65  ;    of  invariant  63  ;    utility  of  63  ; 
significance  of  68 

Covariant  vector  43  ;  tensor  52 
Creation   of  the  physical  world  147,  230, 

238 Curl  67 
Current,  electric  172 

Curvature,  Gaussian  82  ;  of  4-dimensional 
manifold  149 ;    radius  of  spherical  151  ; 

quadric  of  152 
Curvature  of  light-tracks  91 
Cylindrical  world  155 

Deductive  theory  and  experiment  105 
Deflection  of  light  90 
Density,  Lorentz  transformation  of  33  ; 

definitions  of  proper-  121 
Density,  scalar-  and  tensor-  111  ;  in- 

invariant-  205 

Derivative,  covariant  60,  62,  65  ;  contra- 
variant  62  ;  significance  of  68 ;  in-co variant 
203 

de  Sitter's  spherical  world  155,  161 
Determinants,  manipulation  of  107 
Differentiation,  covariant,  rules  for  65.  See 

also  Derivative 
Differentiation  of  summed  expression  75 
Dimensions,  principle  of  48,  54 
Dimensions,  world  of  3  +  1  25  ;  reason  for 

four  206 

Displacement  49 
Displacement,  parallel  70,  213 
Displacement  of  spectral  lines  to  red,  in  sun 

91  ;  in  nebulae  157,  161 
Distance.    See  Length 

Divergence  of  a  tensor  113  ;  of  energy-tensor 
115, 119  ;  of  Hamiltonian  derivative  of  an 
invariant  141 

Dummy  suffixes  51 
Dynamical  velocity  120,  125 
Dynamics  of  a  particle  125 
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E^v  (electromagnetic  energy-tensor)  181 
Eclipse  results  91 

Einstein's  cylindrical  world  155,  166 
Einstein's  law  of  gravitation  81  ;  in  con- 

tinuous matter  101,  119  ;  interpretation 
of  154  ;  alternatives  to  143  ;  equivalent  to 
the  gauging-equation  221 

Electric  charge,  conservation  of  173  ;  in- 
variance  of  174 

Electromagnetic  action  187  ;  energy -tensor 
182  ;  force  171  ;  potential  171  ;  signals 
28  ;  volume  194  ;  waves,  propagation  of 
175 

Electron,  non-Maxwellian  stresses  in  183  ; 
gravitational  field  of  185  ;  acceleration  in 
electromagnetic  field  189  ;  size  of  192  ; 
magnetic  constitution  of  211 

Elements  of  inner  planets  89 
Elliptical  space  157 
Empty  space  221 
Energy,  identified  with  mass  32 
Energy,  potential  135 
Energy-tensor  of  matter  116, 141  ;  of  electro- 

magnetic field  182  ;  obtained  by  Hamil- 
tonian  differentiation  147,  229 

Entropy  34 
Equivalence,  Principle  of  41 
Equivalence  of  displacements  213,  226 
Experiment  and  deductive  theory  105 
Explanation  of  phenomena,  ideal  106 
Extension  and  location  9 

F^v  (electromagnetic  force)  171,  219 
Fields  of  force  37 
Finiteness  of  space  156 
FitzGerald  contraction  25 

Fizeau's  experiment  21 
Flat  space-time  16  ;  condition  for  76 
Flux  67  ;  gravitational  144  ;  electromagnetic 

192,  232 

Force,   covariant   and   contravariant    com- 
ponents 50  ;  expressed  by  3-index  symbols 122 

Force,  electromagnetic  171  ;  Lorentz  trans- 
formation of  1 79  ;  mechanical  force  due 

to  180,  189,  229 

Foucault's  pendulum  99 Four  dimensions  of  world  206 

Fraunhofer  lines,  displacement  of  91 
Fresnel's  convection-coefficient  21 
Fundamental  theorem  of  mechanics  115 
Fundamental  velocity  19  ;  tensors  55,  79  ; 

invariants  141 

0,1V  (Einstein  tensor)  81 
Galilean  coordinates  38 

Gauge-system  200,  217 
Gauging-equation  219 
Gaussian  curvature  82,  151 

Generalisation  of  Weyl's  theory  213 
Generalised  volume  206,  232 
Geodesic,   equations   of   60  ;    produced   by 

parallcl  displacement  71 

Geodesic  curvature  91 
Geometry,  Riemannian    11  ;    abstract  and 

natural  37  ;  world  geometry  198  ;   affine 

geometry  214 
German   letters,   denoting    tensor-densities 111 

Graphical  representation  196 
Gravitation  38.    See  also  Einstein's  law 
Gravitation,  Newtonian  constant  of  128 
Gravitational  field  of  a  particle  82  ;  of  an 

electron  185 
Gravitational  flux  144 
Gravitational  mass  of  sun  87  ;  equality  with 

inertia!  mass  130,  145 
Group  47 

Y\  (Hamiltonian  operator)  139 
hy.  (ponderomotive  force)  181 
Hamiltonian  derivative  139  ;  of  fundamental 

invariants  141  ;  of  electromagnetic  action 
187  ;  of  general  world-invariants  228  ; 
creative  aspect  of  147,  230,  238 

Homogeneous  sphere,  problem  of  168 
Horizon  of  world  101,  157,  165 

Hydrodynamics,  equations  of  117,  118 
Hydrostatic  pressure  121 

Identification,  Principle  of  119,  222 
Identities  satisfied  by  0^v  95,  115 
Isrnoration  of  coordinates  233 
O  t 

Imaginary  intervals  12 
In-  (prefix)  202 
Incompressibility  112,  122 
In-covariant  derivative  203 
Indicatrix  150 
Inductive  theory  105 

Inertia,  elementary  treatment  29  ;  electro- 
magnetic origin  of  183 

Inertial  frame,  precession  of  99 
Inertial  mass  128  ;  equal  to  gravitational 

mass  130,  145 
In-invariants  205,  232 

Inner  multiplication  53 
Integrability  of  parallel  displacement  73  : 

of  length  and  direction  198 
Intensity  and  quantity  111 
In-tensors  202  ;  fundamental  215 
Interval  10 
Invariant  30  ;  formation  of  58 
Invariant  density  (proper-density)  121 
Invariant-density  (scalar-density)  111 
Invariant  mass  30,  183 

Isotropic  coordinates  93 

J^  (charge-and-current  vector)  172 Jacobian  108 

Kepler's  third  law  N!) Kineinatieal  velocity  120,   125 

Lagrange's  equations  ].".:.' 
Lagrangian  function  131,  233 
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Length,  definition  of  1,  217  ;  measurement 
of  11  ;  non-integrability  of  198 

Length  of  a  vector  57 
Light,  velocity  of  19,  23  ;  deflection  in 

gravitational  field  90  ;  propagation  of  175 
Light-pulse,  equation  of  track  37  ;  in  curved 

world  163  ;  in-invariant  equation  220 
Location  and  extension  9 
Longitudinal  mass  31 
Lorentz  transformation  17,  25  ;  for  electro- 

magnetic force  179 

Mp.v  (material  energy-tensor)  181 
Macroscopic  electromagnetic  equations  194 
Magnetic  constitution  of  electron  211 
Manufacture  of  physical  quantities  1 
Mass,  invariant  and  relative  30,  183  ;  gravi- 

tational and  inertial  128,  130,  145  ; 
electromagnetic  193 

Mass,  variation  with  velocity  30  ;  identified 

with  energy  32;  of  electromagnetic  field  183' Mass  of  the  world,  total  166 
Mass-horizon  of  world  165 
Mathematics  contrasted  with  physics  1 
Matter,  conseiwation  of  33  ;  identification  of 

119,  146 

Maxwell's  equations  172  ;  second  order corrections  to  234 
Measure  of  interval  1 1 

Measure-code  2,  48 
Measurement,  principle  of  220,  238 
Mechanical  force  of  electromagnetic  field  180; 

explanation  of  189  ;  general  theory  of  229 
Mercury,  perihelion  of  89 
Mesh-system  9 
Metric,  introduction  of  216  ;  sole  character 

of  space  and  time  221 
Michelson-Morley  experiment  19 
Mixed  tensors  52 

Momentum,  elementary  treatment  29  ;  con- 
servation of  118  ;  electromagnetic  183 

Moon,  motion  of  95 
Multiplication,  inner  and  outer  53 

Natural   coordinates   80;  gauge  206,  219; 
geometry  38,  196 ;  measure  80 

Nebulae,  velocities  of  162 

Non-integrability  of  length  and  direction  198 
Non-Maxwellian  stresses  182,  184 
Non-Riemannian  geometry  197 
Normal,  6-dimensional  151 
Null-cone  22 
Number  of  electrons  in  the  world  167 
Numerical  value  of  quantum  237 

Operators,  □  64,  |l  139 
Orbits  of  planets  85 
Order,  coordinate  agreeing  with  structural 

225 

Parallel  displacement  70,  213 
Parallelogram-law  214 
Parallelogram  ical  property  226 

Particle,  motion  of  36 ;  gravitational  field  of 
82,  100;  dynamics  of  125;  symmetry  of 
125,  155 

Percipient,  determines  natural  laws  by  selec- 
tion 238 

Perigee,  advance  of  99 
Perihelion,  advance  of  88 ;  in  curved  world 

100 
Permanence  115 

Permeability,  magnetic  195,  234 
Perpendicularity  of  vectors  57 
Persistence  and  adjustment  208 
Physical  quantities  1 ;  definition  of  3 
Planetary  orbits  85 
Point-electron  186 
Ponderomotive  force.   See  Mechanical  force 
Postulates,  list  of  104 

Potential,  gravitational  59,  124;  electromag- 
netic 171,  175,  201 

Potential  energy  135,  148 

Poynting's  vector  183 Precession  of  inertial  frame  99 

Pressure,  hydrostatic  121 ;  in  homogeneous 

sphere  169 
Principle  of  dimensions  48, 54;  of  equivalence 

41 ;  of  identification  119, 222 ;  of  least  action 
139,  147,  209 ;  of  measurement  220,  238 

Problem  of  two  bodies  95 ;  of  rotating  disc 
112  ;  of  homogeneous  sphere  168 

Product,  inner  and  outer  53 
Propagation  of  gravitational  waves  130;  of 

electromagnetic  waves  175 
Propagation  with  unit  velocity  64  ;  solution 

of  equation  178 
Proper-  (prefix)  34.  See  Invariant  mass  and 

Density 

Proper-coordinates  80 
Proper-time  87 
Proper-  volume  110 
Pseudo-energy-tensor  135 
Pseudo-  vector  179 

Quadratic  formula  for  interval  10;  justifica- 
tion of  224 

Quadric  of  curvature  152 
Quantity  and  intensity  111 
Quantum,  excluded  from  coordinate  calcula- 

tions 225  ;  numerical  value  of  237 

Quotient  law  54 

R,xV  (gauging-tensor)  219 
Rapidity  22 
Recession  of  spiral  nebulae  157,  161 
Rectangular  coordinates  and  time  13 
Red-shift  of  spectral  lines  in  sun  91  ;   in 

nebulae  157,  161 
Relation-structure  224 
Relativity  of  physical  quantities  5 
Retardation  of  moving  clocks  16,  26 
Retarded  potential  179 
Riemann-Christoffel  tensor  72 ;  vanishing  of 

73,  76 ;  importance  of  79 ;  generalisation 
of  204,  215 
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Riemannian  geometry  11 
Rotating  axes,  quadratic  form  for  35 
Rotating  disc  112 
Rotation,  absolute  99 

Scalar  52 

Scalar-density  111 
Self- perpendicular  vector  57 
Simultaneity  at  different  places  27 

de  Sitter's  spherical  world  155,  161 
Space,  a  network  of  intervals  158 
Spacelike  intervals  22 
Special  theory  of  relativity  16 
Spectral  lines,  displacement  in  sun  91  ;  in 

nebulae  157,  161 
Sphere,  problem  of  homogeneous  168 
Spherical  curvature,  radius  of  151 
Spherical  world  155,  161 
Spiral  nebulae,  velocities  of  162 
Spur  58 
Static  coordinates  81 

Stationary  action,  principle  of  139,  147,  209 

Stokes's  theorem  67  ;  application  of  214 
Stress- system  117  ;  gravitational  field  due  to 

104;  electromagnetic  183  ;  non-Maxwellian 
184 

Structure,  represented  by  relations  224 
Substitution-operator  51,  55 
Suffixes,  raising  and  lowering  of  56 
Summation  convention  50 

Sun,  gravitational  mass  of  87 
Surface-element  66;  in-invariant  pertaining 

to  232 

Symmetry,  a  relative  attribute   155 ;  of  a 
particle  125,  155;  of  an  electron  192 

T^v  (energy-tensor)  102,  116 
Temperature  34 
Tensor  51 

Tensor-density  111 
Tensor  equations  49 
Things  221 
Three-index  symbol  58 ;  contracted  7 1  : 

generalised  203,  218 
Time,  definition  of  14 ;  convention  in  reckon- 

ing 15,  29 ;  immediate  consciousness  of  23; 
extended  meaning  39 

Timelike  intervals  22 
Track  of  moving  particle  and  light-pulse  36 
Transformation  of  coordinates,  Lorentz  1 7  ; 

general  34,  43 
Transport  of  clocks  15,  27 
Two  bodies,  problem  of  95 

Uniform  vector-field  73;  mesh-system  77 
Unit,  change  of  48 ;  of  action  237 

Vector    43;    mathematical    notion    of   44; 

physical  notion  of  47 
Velocity,  fundamental  19 
Velocity  of  light  19;  in  moving  matter  21 ; 

in  sun's  gravitational  field  93 

Velocity-vector^?  1**" Volume,  physical  and  geometrical  110;  elec- 
tromagnetic 194;  generalised  206,  232 

Volume-element  109 

Wave-equation,  solution  of  178 
Waves,  gravitational  130;  electromagnetic 

175 
Weyl's  theory  198  ;  modified  view  of  208 
World,  shape  of  155;  mass  of  160,  166 
World  geometry  198 
World-invariants,  dynamical   properties  of 

228 
World-line  125 

Zero-length  of  light  tracks  199 
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